70 research outputs found

    Balloon-Borne Submillimeter Polarimetry of the Vela C Molecular Cloud: Systematic Dependence of Polarization Fraction on Column Density and Local Polarization-Angle Dispersion

    Get PDF
    We present results for Vela C obtained during the 2012 flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry. We mapped polarized intensity across almost the entire extent of this giant molecular cloud, in bands centered at 250, 350, and 500 μm. In this initial paper, we show our 500 μm data smoothed to a resolution of 2farcm5 (approximately 0.5 pc). We show that the mean level of the fractional polarization p and most of its spatial variations can be accounted for using an empirical three-parameter power-law fit, p ∝ N^(-0.45) S^(-0.60), where N is the hydrogen column density and S is the polarization-angle dispersion on 0.5 pc scales. The decrease of p with increasing S is expected because changes in the magnetic field direction within the cloud volume sampled by each measurement will lead to cancellation of polarization signals. The decrease of p with increasing N might be caused by the same effect, if magnetic field disorder increases for high column density sightlines. Alternatively, the intrinsic polarization efficiency of the dust grain population might be lower for material along higher density sightlines. We find no significant correlation between N and S. Comparison of observed submillimeter polarization maps with synthetic polarization maps derived from numerical simulations provides a promising method for testing star formation theories. Realistic simulations should allow for the possibility of variable intrinsic polarization efficiency. The measured levels of correlation among p, N, and S provide points of comparison between observations and simulations

    Relative Alignment between the Magnetic Field and Molecular Gas Structure in the Vela C Giant Molecular Cloud Using Low- and High-density Tracers

    Get PDF
    We compare the magnetic field orientation for the young giant molecular cloud Vela C inferred from 500 μm polarization maps made with the BLASTPol balloon-borne polarimeter to the orientation of structures in the integrated line emission maps from Mopra observations. Averaging over the entire cloud we find that elongated structures in integrated line-intensity or zeroth-moment maps, for low-density tracers such as ^(12)CO and ^(13)CO J → 1 – 0, are statistically more likely to align parallel to the magnetic field, while intermediate- or high-density tracers show (on average) a tendency for alignment perpendicular to the magnetic field. This observation agrees with previous studies of the change in relative orientation with column density in Vela C, and supports a model where the magnetic field is strong enough to have influenced the formation of dense gas structures within Vela C. The transition from parallel to no preferred/perpendicular orientation appears to occur between the densities traced by ^(13)CO and by C^(18)O J → 1 – 0. Using RADEX radiative transfer models to estimate the characteristic number density traced by each molecular line, we find that the transition occurs at a molecular hydrogen number density of approximately 10^3 cm^(−3). We also see that the Centre Ridge (the highest column density and most active star-forming region within Vela C) appears to have a transition at a lower number density, suggesting that this may depend on the evolutionary state of the cloud

    Balloon-Borne Submillimeter Polarimetry of the Vela C Molecular Cloud: Systematic Dependence of Polarization Fraction on Column Density and Local Polarization-Angle Dispersion

    Get PDF
    We present results for Vela C obtained during the 2012 flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry. We mapped polarized intensity across almost the entire extent of this giant molecular cloud, in bands centered at 250, 350, and 500 μm. In this initial paper, we show our 500 μm data smoothed to a resolution of 2farcm5 (approximately 0.5 pc). We show that the mean level of the fractional polarization p and most of its spatial variations can be accounted for using an empirical three-parameter power-law fit, p ∝ N^(-0.45) S^(-0.60), where N is the hydrogen column density and S is the polarization-angle dispersion on 0.5 pc scales. The decrease of p with increasing S is expected because changes in the magnetic field direction within the cloud volume sampled by each measurement will lead to cancellation of polarization signals. The decrease of p with increasing N might be caused by the same effect, if magnetic field disorder increases for high column density sightlines. Alternatively, the intrinsic polarization efficiency of the dust grain population might be lower for material along higher density sightlines. We find no significant correlation between N and S. Comparison of observed submillimeter polarization maps with synthetic polarization maps derived from numerical simulations provides a promising method for testing star formation theories. Realistic simulations should allow for the possibility of variable intrinsic polarization efficiency. The measured levels of correlation among p, N, and S provide points of comparison between observations and simulations

    SOFIA and ALMA Investigate Magnetic Fields and Gas Structures in Massive Star Formation: The Case of the Masquerading Monster in BYF 73

    Full text link
    We present SOFIA+ALMA continuum and spectral-line polarisation data on the massive molecular cloud BYF 73, revealing important details about the magnetic field morphology, gas structures, and energetics in this unusual massive star formation laboratory. The 154μ\mum HAWC+ polarisation map finds a highly organised magnetic field in the densest, inner 0.55×\times0.40 pc portion of the cloud, compared to an unremarkable morphology in the cloud's outer layers. The 3mm continuum ALMA polarisation data reveal several more structures in the inner domain, including a pc-long, \sim500 M_{\odot} "Streamer" around the central massive protostellar object MIR 2, with magnetic fields mostly parallel to the east-west Streamer but oriented north-south across MIR 2. The magnetic field orientation changes from mostly parallel to the column density structures to mostly perpendicular, at thresholds NcritN_{\rm crit} = 6.6×\times1026^{26} m2^{-2}, ncritn_{\rm crit} = 2.5×\times1011^{11} m3^{-3}, and BcritB_{\rm crit} = 42±\pm7 nT. ALMA also mapped Goldreich-Kylafis polarisation in 12^{12}CO across the cloud, which traces in both total intensity and polarised flux, a powerful bipolar outflow from MIR 2 that interacts strongly with the Streamer. The magnetic field is also strongly aligned along the outflow direction; energetically, it may dominate the outflow near MIR 2, comprising rare evidence for a magnetocentrifugal origin to such outflows. A portion of the Streamer may be in Keplerian rotation around MIR 2, implying a gravitating mass 1350±\pm50 M_{\odot} for the protostar+disk+envelope; alternatively, these kinematics can be explained by gas in free fall towards a 950±\pm35 M_{\odot} object. The high accretion rate onto MIR 2 apparently occurs through the Streamer/disk, and could account for \sim33% of MIR 2's total luminosity via gravitational energy release.Comment: 33 pages, 32 figures, accepted by ApJ. Line-Integral Convolution (LIC) images and movie versions of Figures 3b, 7, and 29 are available at https://gemelli.spacescience.org/~pbarnes/research/champ/papers
    corecore