79 research outputs found

    Quantum Computing of Quantum Chaos in the Kicked Rotator Model

    Get PDF
    We investigate a quantum algorithm which simulates efficiently the quantum kicked rotator model, a system which displays rich physical properties, and enables to study problems of quantum chaos, atomic physics and localization of electrons in solids. The effects of errors in gate operations are tested on this algorithm in numerical simulations with up to 20 qubits. In this way various physical quantities are investigated. Some of them, such as second moment of probability distribution and tunneling transitions through invariant curves are shown to be particularly sensitive to errors. However, investigations of the fidelity and Wigner and Husimi distributions show that these physical quantities are robust in presence of imperfections. This implies that the algorithm can simulate the dynamics of quantum chaos in presence of a moderate amount of noise.Comment: research at Quantware MIPS Center http://www.quantware.ups-tlse.fr, revtex 11 pages, 13 figs, 2 figs and discussion adde

    Percolation in three-dimensional random field Ising magnets

    Get PDF
    The structure of the three-dimensional random field Ising magnet is studied by ground state calculations. We investigate the percolation of the minority spin orientation in the paramagnetic phase above the bulk phase transition, located at [Delta/J]_c ~= 2.27, where Delta is the standard deviation of the Gaussian random fields (J=1). With an external field H there is a disorder strength dependent critical field +/- H_c(Delta) for the down (or up) spin spanning. The percolation transition is in the standard percolation universality class. H_c ~ (Delta - Delta_p)^{delta}, where Delta_p = 2.43 +/- 0.01 and delta = 1.31 +/- 0.03, implying a critical line for Delta_c < Delta <= Delta_p. When, with zero external field, Delta is decreased from a large value there is a transition from the simultaneous up and down spin spanning, with probability Pi_{uparrow downarrow} = 1.00 to Pi_{uparrow downarrow} = 0. This is located at Delta = 2.32 +/- 0.01, i.e., above Delta_c. The spanning cluster has the fractal dimension of standard percolation D_f = 2.53 at H = H_c(Delta). We provide evidence that this is asymptotically true even at H=0 for Delta_c < Delta <= Delta_p beyond a crossover scale that diverges as Delta_c is approached from above. Percolation implies extra finite size effects in the ground states of the 3D RFIM.Comment: replaced with version to appear in Physical Review

    Dynamical localization simulated on a few qubits quantum computer

    Get PDF
    We show that a quantum computer operating with a small number of qubits can simulate the dynamical localization of classical chaos in a system described by the quantum sawtooth map model. The dynamics of the system is computed efficiently up to a time t≥ℓt\geq \ell, and then the localization length ℓ\ell can be obtained with accuracy ν\nu by means of order 1/ν21/\nu^2 computer runs, followed by coarse grained projective measurements on the computational basis. We also show that in the presence of static imperfections a reliable computation of the localization length is possible without error correction up to an imperfection threshold which drops polynomially with the number of qubits.Comment: 8 pages, 8 figure

    Chaos in a double driven dissipative nonlinear oscillator

    Get PDF
    We propose an anharmonic oscillator driven by two periodic forces of different frequencies as a new time-dependent model for investigating quantum dissipative chaos. Our analysis is done in the frame of statistical ensemble of quantum trajectories in quantum state diffusion approach. Quantum dynamical manifestation of chaotic behavior, including the emergence of chaos, properties of strange attractors, and quantum entanglement are studied by numerical simulation of ensemble averaged Wigner function and von Neumann entropy.Comment: 9 pages, 18 figure

    Further studies on a hybrid cell-surface antigen associated with human chromosome 11 using a monoclonal antibody

    Full text link
    A monoclonal antibody has been obtained that recognizes an antigen encoded by human chromosome 11. We present evidence that this monoclonal antibody recognizes the same or a similar antigenic activity as that previously called a 1 . Genetic information necessary for a 1 expression and recognition by the monoclonal antibody both map to 11p13 → 11pter. Mutants that have lost a 1 are no longer recognized by the monoclonal antibody. The macroglycolipid fraction of human erythrocyte membranes which contains the a 1 antigenic activity is able to convert antigen-negative Chinese hamster ovary cells into cells which are killed by the monoclonal antibody plus complement.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45556/1/11188_2005_Article_BF01543049.pd

    Layers of Cold Dipolar Molecules in the Harmonic Approximation

    Full text link
    We consider the N-body problem in a layered geometry containing cold polar molecules with dipole moments that are polarized perpendicular to the layers. A harmonic approximation is used to simplify the hamiltonian and bound state properties of the two-body inter-layer dipolar potential are used to adjust this effective interaction. To model the intra-layer repulsion of the polar molecules, we introduce a repulsive inter-molecule potential that can be parametrically varied. Single chains containing one molecule in each layer, as well as multi-chain structures in many layers are discussed and their energies and radii determined. We extract the normal modes of the various systems as measures of their volatility and eventually of instability, and compare our findings to the excitations in crystals. We find modes that can be classified as either chains vibrating in phase or as layers vibrating against each other. The former correspond to acoustic and the latter to optical phonons. Instabilities can occur for large intra-layer repulsion and produce diverging amplitudes of molecules in the outer layers. Lastly, we consider experimentally relevant regimes to observe the structures.Comment: 17 pages, 20 figures, accepted versio
    • …
    corecore