7,370 research outputs found
Achieving Foundation Accountability and Transparency: Lessons From the Robert Wood Johnson Foundation’s \u3ci\u3eScorecard\u3c/i\u3e
· The purpose of this article is to help foundations in their accountability and transparency efforts by sharing lessons from one foundation’s journey to develop a scorecard.
· A commitment to funding and sharing the results from rigorous evaluations set the tone for Robert Wood Johnson Foundation (RWJF) accountability.
· The Scorecard is a powerful tool for RWJF to set goals, track organizational effectiveness, and motivate responses to shortcomings.
· Foundations can tailor their scorecard to include what best serves their needs.
· With its Scorecard, RWJF found that comparative and quantitative measures are the most powerful forces to motivate change.
· Setting targets motivates staff to focus their efforts on certain areas and make improvements
Dynamical Mean-Field Study of the Ferromagnetic Transition Temperature of a Two-Band Model for Colossal Magnetoresistance Materials
The ferromagnetic (FM) transition temperature (Tc) of a two-band
Double-Exchange (DE) model for colossal magnetoresistance (CMR) materials is
studied using dynamical mean-field theory (DMFT), in wide ranges of coupling
constants, hopping parameters, and carrier densities. The results are shown to
be in excellent agreement with Monte Carlo simulations. When the bands overlap,
the value of Tc is found to be much larger than in the one-band case, for all
values of the chemical potential within the energy overlap interval. A nonzero
interband hopping produces an additional substantial increase of Tc, showing
the importance of these nondiagonal terms, and the concomitant use of multiband
models, to boost up the critical temperatures in DE-based theories.Comment: 4 pages, 4 eps figure
Capabilities of the GRO/BATSE for monitoring of discrete sources
Although the Burst and Transient Source Experiment (BATSE) to be flown on the Gamma Ray Observatory has as its primary objective the detection of gamma ray bursts, its uncollimated design will enable it to serve a unique function as an all-sky monitor for bright hard X-ray and low-energy gamma ray sources. Pulsating sources may be detected by conventional techniques such as summed-epoch and Fourier analyses. The BATSE will, in addition, be able to use Earth occultation in an unprecedented way to monitor sufficiently bright sources as often as several times per day over approx. 85% of the sky. Estimates of the expected BATSE sensitivity using both of these techniques are presented
Gamma radiation background measurements from Spacelab 2
A Nuclear Radiation Monitor incorporating a NaI(Tl) scintillation detector was flown as part of the verification flight instrumentation on the Spacelab 2 mission, July 29 to August 6, 1985. Gamma-ray spectra were measured with better than 20 s resolution throughout most of the mission in the energy range 0.1 to 30 MeV. Knowledge of the decay characteristics and the geomagnetic dependence of the counting rates enable measurement of the various components of the Spacelab gamma-ray background: prompt secondary radiation, Earth albedo, and delayed induced radioactivity. The status of the data analysis and present relevant examples of typical background behavior are covered
Acceleration Mechanics in Relativistic Shocks by the Weibel Instability
Plasma instabilities (e.g., Buneman, Weibel and other two-stream
instabilities) created in collisionless shocks may be responsible for particle
(electron, positron, and ion) acceleration. Using a 3-D relativistic
electromagnetic particle (REMP) code, we have investigated long-term particle
acceleration associated with relativistic electron-ion or electron-positron jet
fronts propagating into an unmagnetized ambient electron-ion or
electron-positron plasma. These simulations have been performed with a longer
simulation system than our previous simulations in order to investigate the
nonlinear stage of the Weibel instability and its particle acceleration
mechanism. The current channels generated by the Weibel instability are
surrounded by toroidal magnetic fields and radial electric fields. This radial
electric field is quasi stationary and accelerates particles which are then
deflected by the magnetic field.Comment: 17 pages, 5 figures, accepted for publication in ApJ, A full
resolution ot the paper can be found at
http://gammaray.nsstc.nasa.gov/~nishikawa/accmec.pd
Stable Quantum Resonances in Atom Optics
A theory for stabilization of quantum resonances by a mechanism similar to
one leading to classical resonances in nonlinear systems is presented. It
explains recent surprising experimental results, obtained for cold Cesium atoms
when driven in the presence of gravity, and leads to further predictions. The
theory makes use of invariance properties of the system, that are similar to
those of solids, allowing for separation into independent kicked rotor
problems. The analysis relies on a fictitious classical limit where the small
parameter is {\em not} Planck's constant, but rather the detuning from the
frequency that is resonant in absence of gravity.Comment: 5 pages, 3 figure
Scaling Properties of Weak Chaos in Nonlinear Disordered Lattices
The Discrete Nonlinear Schroedinger Equation with a random potential in one
dimension is studied as a dynamical system. It is characterized by the length,
the strength of the random potential and by the field density that determines
the effect of nonlinearity. The probability of the system to be regular is
established numerically and found to be a scaling function. This property is
used to calculate the asymptotic properties of the system in regimes beyond our
computational power.Comment: 4 pages, 5 figure
- …