5,038 research outputs found
Characterization of low-energy magnetic excitations in chromium
The low-energy excitations of Cr, i.e. the Fincher-Burke (FB) modes, have
been investigated in the transversely polarized spin-density-wave phase by
inelastic neutron scattering using a single-(Q+-) crystal with a propagation
vector (Q+-) parallel to [0,0,1]. The constant-momentum-transfer scans show
that the energy spectra consist of two components, namely dispersive FB modes
and an almost energy-independent cross section. Most remarkably, we find that
the spectrum of the FB modes exhibits one peak at 140 K near Q = (0,0,0.98) and
two peaks near Q = (0,0,1.02), respectively. This is surprising because Cr
crystallizes in a centro-symmetric bcc structure. The asymmetry of those energy
spectra decreases with increasing temperature. In addition, the observed
magnetic peak intensity is independent of Q suggesting a transfer of
spectral-weight between the upper and lower FB modes. The energy-independent
cross section is localized only between the incommensurate peaks and develops
rapidly with increasing temperature.Comment: 6 pages, 8 figure
Fractional -scaling for quantum kicked rotors without cantori
Previous studies of quantum delta-kicked rotors have found momentum
probability distributions with a typical width (localization length )
characterized by fractional -scaling, ie in regimes
and phase-space regions close to `golden-ratio' cantori. In contrast, in
typical chaotic regimes, the scaling is integer, . Here we
consider a generic variant of the kicked rotor, the random-pair-kicked particle
(RP-KP), obtained by randomizing the phases every second kick; it has no KAM
mixed phase-space structures, like golden-ratio cantori, at all. Our unexpected
finding is that, over comparable phase-space regions, it also has fractional
scaling, but . A semiclassical analysis indicates that the
scaling here is of quantum origin and is not a signature of
classical cantori.Comment: 5 pages, 4 figures, Revtex, typos removed, further analysis added,
authors adjuste
Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., the Buneman instability,
two-streaming instability, and the Weibel instability) created in the shocks
are responsible for particle (electron, positron, and ion) acceleration. Using
a 3-D relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic jet front propagating
through an ambient plasma with and without initial magnetic fields. We find
only small differences in the results between no ambient and weak ambient
magnetic fields. Simulations show that the Weibel instability created in the
collisionless shock front accelerates particles perpendicular and parallel to
the jet propagation direction. The simulation results show that this
instability is responsible for generating and amplifying highly nonuniform,
small-scale magnetic fields, which contribute to the electron's transverse
deflection behind the jet head. The ``jitter'' radiation from deflected
electrons has different properties than synchrotron radiation which is
calculated in a uniform magnetic field. This jitter radiation may be important
to understanding the complex time evolution and/or spectral structure in
gamma-ray bursts, relativistic jets, and supernova remnants.Comment: 4 pages, 1 figure, submitted to Proceedings of 2003 Gamma Ray Burst
Conferenc
Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., Buneman, Weibel and
other two-stream instabilities) created in collisionless shocks are responsible
for particle (electron, positron, and ion) acceleration. Using a 3-D
relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic electron-positron jet
front propagating into an ambient electron-positron plasma with and without
initial magnetic fields. We find small differences in the results for no
ambient and modest ambient magnetic fields. New simulations show that the
Weibel instability created in the collisionless shock front accelerates jet and
ambient particles both perpendicular and parallel to the jet propagation
direction. Furthermore, the non-linear fluctuation amplitudes of densities,
currents, electric, and magnetic fields in the electron-positron shock are
larger than those found in the electron-ion shock studied in a previous paper
at the comparable simulation time. This comes from the fact that both electrons
and positrons contribute to generation of the Weibel instability. Additionally,
we have performed simulations with different electron skin depths. We find that
growth times scale inversely with the plasma frequency, and the sizes of
structures created by the Weibel instability scale proportional to the electron
skin depth. This is the expected result and indicates that the simulations have
sufficient grid resolution. The simulation results show that the Weibel
instability is responsible for generating and amplifying nonuniform,
small-scale magnetic fields which contribute to the electron's (positron's)
transverse deflection behind the jet head.Comment: 18 pages, 8 figures, revised and accepted for ApJ, A full resolution
of the paper can be found at
http://gammaray.nsstc.nasa.gov/~nishikawa/apjep1.pd
Particle Acceleration in Relativistic Jets due to Weibel Instability
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., the Buneman instability,
two-streaming instability, and the Weibel instability) created in the shocks
are responsible for particle (electron, positron, and ion) acceleration. Using
a 3-D relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic jet front propagating
through an ambient plasma with and without initial magnetic fields. We find
only small differences in the results between no ambient and weak ambient
magnetic fields. Simulations show that the Weibel instability created in the
collisionless shock front accelerates particles perpendicular and parallel to
the jet propagation direction. While some Fermi acceleration may occur at the
jet front, the majority of electron acceleration takes place behind the jet
front and cannot be characterized as Fermi acceleration. The simulation results
show that this instability is responsible for generating and amplifying highly
nonuniform, small-scale magnetic fields, which contribute to the electron's
transverse deflection behind the jet head. The ``jitter'' radiation (Medvedev
2000) from deflected electrons has different properties than synchrotron
radiation which is calculated in a uniform magnetic field. This jitter
radiation may be important to understanding the complex time evolution and/or
spectral structure in gamma-ray bursts, relativistic jets, and supernova
remnants.Comment: ApJ, in press, Sept. 20, 2003 (figures with better resolution:
http://gammaray.nsstc.nasa.gov/~nishikawa/apjweib.pdf
Spin Diffusion in Double-Exchange Manganites
The theoretical study of spin diffusion in double-exchange magnets by means
of dynamical mean-field theory is presented. We demonstrate that the
spin-diffusion coefficient becomes independent of the Hund's coupling JH in the
range of parameters JH*S >> W >> T, W being the bandwidth, relevant to colossal
magnetoresistive manganites in the metallic part of their phase diagram. Our
study reveals a close correspondence as well as some counterintuitive
differences between the results on Bethe and hypercubic lattices. Our results
are in accord with neutron scattering data and with previous theoretical work
for high temperatures.Comment: 4.0 pages, 3 figures, RevTeX 4, replaced with the published versio
A numerical and symbolical approximation of the Nonlinear Anderson Model
A modified perturbation theory in the strength of the nonlinear term is used
to solve the Nonlinear Schroedinger Equation with a random potential. It is
demonstrated that in some cases it is more efficient than other methods.
Moreover we obtain error estimates. This approach can be useful for the
solution of other nonlinear differential equations of physical relevance.Comment: 21 pages and 7 figure
Particle acceleration, magnetic field generation, and emission in relativistic pair jets
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., Buneman, Weibel and
other two-stream instabilities) created in collisionless shocks are responsible
for particle (electron, positron, and ion) acceleration. Using a 3-D
relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic jet front propagating into
an ambient plasma. We find that the growth times of Weibel instability are
proportional to the Lorentz factors of jets. Simulations show that the Weibel
instability created in the collisionless shock front accelerates jet and
ambient particles both perpendicular and parallel to the jet propagation
direction.Comment: 4 pages, 2 figures, submitted to Il nuovo cimento (4th Workshop
Gamma-Ray Bursts in the Afterglow Era, Rome, 18-22 October 2004
Invalidity of Classes of Approximated Hall Effect Calculations
In this comment, I point out a number of approximated derivations for the
effective equation of motion, now been applied to d-wave superconductors by
Kopnin and Volovik are invalid. The major error in those approximated
derivations is the inappropriate use of the relaxation time approximation in
force-force correlation functions, or in force balance equations, or in similar
variations. This approximation is wrong and unnecessary.Comment: final version, minor changes, to appear in Phys. Rev. Let
- …