2 research outputs found

    Phase I study of the aurora A kinase inhibitor alisertib with induction chemotherapy in patients with acute myeloid leukemia

    Get PDF
    Aberrant expression of aurora kinase A is implicated in the genesis of various neoplasms, including acute myeloid leukemia. Alisertib, an aurora A kinase inhibitor, has demonstrated efficacy as monotherapy in trials of myeloid malignancy, and this efficacy appears enhanced in combination with conventional chemotherapies. In this phase I, dose-escalation study, newly diagnosed patients received conventional induction with cytarabine and idarubicin, after which alisertib was administered for 7 days. Dose escalation occurred via cohorts. Patients could then receive up to four cycles of consolidation, incorporating alisertib, and thereafter alisertib maintenance for up to 12 months. Twenty-two patients were enrolled. One dose limiting toxicity occurred at dose level 2 (prolonged thrombocytopenia), and the recommended phase 2 dose was established at 30mg twice daily. Common therapy-related toxicities included cytopenias and mucositis. Only three (14%) patients had persistent disease at mid-cycle, requiring “5+2” reinduction. The composite remission rate (complete remission and complete remission with incomplete neutrophil recovery) was 86% (nineteen of twenty-two patients; 90% CI 68–96%). Among those over age 65 and those with high-risk disease (secondary acute leukemia or cytogenetically high-risk disease), the composite remission rate was 88% and 100%, respectively. The median follow up was 13.5 months. Of those treated at the recommended phase 2 dose, the 12-month overall survival and progression-free survival were 62% (90% CI 33–81%) and 42% (90% CI 17–65%), respectively. Alisertib is well tolerated when combined with induction chemotherapy in acute myeloid leukemia, with a promising suggestion of efficacy. (clinicaltrials.gov Identifier:01779843)

    GaSI: A wide gap non-centrosymmetric helical crystal

    No full text
    The complex non-centrosymmetric and chiral nature of helical structures endow materials that possess such motifs with unusual properties. However, despite their ubiquity in biological and organic systems, there is a severe lack of inorganic crystals that display helicity in extended lattices where these unusual properties are expected to be most pronounced. Here, we report a new inorganic helical structure, gallium sulfur iodide (GaSI), within the exfoliable class of III-VI-VII (1:1:1) one-dimensional (1D) van der Waals (vdW) crystals. Through detailed structural analyses, including single crystal X-ray diffraction and electron microscopy, we elucidate the apparent non-crystallographic screw axis and the first example of an atomic scale helical structure bearing a “squircular” cross-section in GaSI. Crystallizing in the non-centrosymmetric P-4 space group, we found that GaSI crystals exhibit pronounced second harmonic generation. From diffuse reflectance spectroscopy, GaSI displays a sizeable band gap of 3.69 eV, owing to weaker orbital overlap between conduction and the valence bands based on density functional theory calculations. These results position GaSI as a promising exfoliable non-linear optical material across a broad optical window
    corecore