6,261 research outputs found
Spin Dynamics of a Canted Antiferromagnet in a Magnetic Field
The spin dynamics of a canted antiferromagnet with a quadratic spin-wave
dispersion near \vq =0 is shown to possess a unique signature. When the
anisotropy gap is negligible, the spin-wave stiffness \dsw (\vq, B) =
(\omega_{\vq}-B)/q^2 depends on whether the limit of zero field or zero
wavevector is taken first. Consequently, \dsw is a strong function of
magnetic field at a fixed wavevector. Even in the presence of a sizeable
anisotropy gap, the field dependence of both \dsw and the gap energy
distinguishes a canted antiferromagnet from a phase-separated mixture
containing both ferromagnetic and antiferromagnetic regions.Comment: 10 pages, 3 figure
On Chinese Foreign Policy: A Big Stick, An Equally Big Carrot
This paper attempts to provide a framework for analyzing China\u27s newfound assertiveness. Does a rising China pose a systemic threat to the world order, or will Beijing\u27s rise be characterized by what policy officials refer to as a Peaceful Rise ? This paper argues that China is building a bigger stick and a bigger carrot to increase its hard and soft power capabilities; however, this policy won\u27t necessarily pose a threat. The United States must strengthen Western-central international institutions and guide Beijing into this framework if the US wants to see a Peaceful Rise
Characterization of low-energy magnetic excitations in chromium
The low-energy excitations of Cr, i.e. the Fincher-Burke (FB) modes, have
been investigated in the transversely polarized spin-density-wave phase by
inelastic neutron scattering using a single-(Q+-) crystal with a propagation
vector (Q+-) parallel to [0,0,1]. The constant-momentum-transfer scans show
that the energy spectra consist of two components, namely dispersive FB modes
and an almost energy-independent cross section. Most remarkably, we find that
the spectrum of the FB modes exhibits one peak at 140 K near Q = (0,0,0.98) and
two peaks near Q = (0,0,1.02), respectively. This is surprising because Cr
crystallizes in a centro-symmetric bcc structure. The asymmetry of those energy
spectra decreases with increasing temperature. In addition, the observed
magnetic peak intensity is independent of Q suggesting a transfer of
spectral-weight between the upper and lower FB modes. The energy-independent
cross section is localized only between the incommensurate peaks and develops
rapidly with increasing temperature.Comment: 6 pages, 8 figure
A 3D Coarse-to-Fine Framework for Volumetric Medical Image Segmentation
In this paper, we adopt 3D Convolutional Neural Networks to segment
volumetric medical images. Although deep neural networks have been proven to be
very effective on many 2D vision tasks, it is still challenging to apply them
to 3D tasks due to the limited amount of annotated 3D data and limited
computational resources. We propose a novel 3D-based coarse-to-fine framework
to effectively and efficiently tackle these challenges. The proposed 3D-based
framework outperforms the 2D counterpart to a large margin since it can
leverage the rich spatial infor- mation along all three axes. We conduct
experiments on two datasets which include healthy and pathological pancreases
respectively, and achieve the current state-of-the-art in terms of
Dice-S{\o}rensen Coefficient (DSC). On the NIH pancreas segmentation dataset,
we outperform the previous best by an average of over 2%, and the worst case is
improved by 7% to reach almost 70%, which indicates the reliability of our
framework in clinical applications.Comment: 9 pages, 4 figures, Accepted to 3D
Acceleration Mechanics in Relativistic Shocks by the Weibel Instability
Plasma instabilities (e.g., Buneman, Weibel and other two-stream
instabilities) created in collisionless shocks may be responsible for particle
(electron, positron, and ion) acceleration. Using a 3-D relativistic
electromagnetic particle (REMP) code, we have investigated long-term particle
acceleration associated with relativistic electron-ion or electron-positron jet
fronts propagating into an unmagnetized ambient electron-ion or
electron-positron plasma. These simulations have been performed with a longer
simulation system than our previous simulations in order to investigate the
nonlinear stage of the Weibel instability and its particle acceleration
mechanism. The current channels generated by the Weibel instability are
surrounded by toroidal magnetic fields and radial electric fields. This radial
electric field is quasi stationary and accelerates particles which are then
deflected by the magnetic field.Comment: 17 pages, 5 figures, accepted for publication in ApJ, A full
resolution ot the paper can be found at
http://gammaray.nsstc.nasa.gov/~nishikawa/accmec.pd
Dynamics of Impurity and Valence Bands in GaMnAs within the Dynamical Mean Field Approximation
We calculate the density-of-states and the spectral function of GaMnAs within
the dynamical mean-field approximation. Our model includes the competing
effects of the strong spin-orbit coupling on the J=3/2 GaAs hole bands and the
exchange interaction between the magnetic ions and the itinerant holes. We
study the quasi-particle and impurity bands in the paramagnetic and
ferromagnetic phases for different values of impurity-hole coupling at the Mn
doping of x=0.05. By analyzing the anisotropic angular distribution of the
impurity band carriers at T=0, we conclude that the carrier polarization is
optimal when the carriers move along the direction parallel to the average
magnetization.Comment: 6 pages, 4 figure
- …