11,477 research outputs found

    Impulse distributions in dense granular flows: signatures of large-scale spatial structures

    Full text link
    In this paper we report the results of simulations of a 2D gravity driven, dissipative granular flow through a hopper system. Measurements of impulse distributions P(I) on the simulated system show flow-velocity-invariant behavior of the distribution for impulses larger than the average impulse . For small impulses, however, P(I) decreases significantly with flow velocity, a phenomenon which can be attributed exclusively to collisions between grains undergoing frequent collisions. Visualizations of the system also show that these frequently colliding particles tend to form increasingly large linear clusters as the flow velocity decreases. A model is proposed for the form of P(I), given distributions of cluster size and velocity, which accurately predicts the observed form of the distribution. Thus the impulse distribution provides some insight into the formation and properties of these ``dynamic'' force chains.Comment: 4 pages, 4 figure

    Transfer of Graphene with Protective Oxide Layers

    Full text link
    Transfer of graphene, grown by Chemical Vapor Deposition (CVD), to a substrate of choice, typically involves deposition of a polymeric layer (typically, poly(methyl methacrylate, PMMA or polydimethylsiloxane, PDMS). These polymers are quite hard to remove without leaving some residues behind. Here we study a transfer of graphene with a protective thin oxide layer. The thin oxide layer is grown by Atomic Deposition Layer (ALD) on the graphene right after the growth stage on Cu foils. One can further aid the oxide-graphene transfer by depositing a very thin polymer layer on top of the composite (much thinner than the usual thickness) following by a more aggressive polymeric removal methods, thus leaving the graphene intact. We report on the nucleation growth process of alumina and hafnia films on the graphene, their resulting strain and on their optical transmission. We suggest that hafnia is a better oxide to coat the graphene than alumina in terms of uniformity and defects.Comment: 13 pgs, 13 figure

    Quantum critical phenomena of long-range interacting bosons in a time-dependent random potential

    Full text link
    We study the superfluid-insulator transition of a particle-hole symmetric system of long-range interacting bosons in a time-dependent random potential in two dimensions, using the momentum-shell renormalization-group method. We find a new stable fixed point with non-zero values of the parameters representing the short- and long-range interactions and disorder when the interaction is asymptotically logarithmic. This is contrasted to the non-random case with a logarithmic interaction, where the transition is argued to be first-order, and to the 1/r1/r Coulomb interaction case, where either a first-order transition or an XY-like transition is possible depending on the parameters. We propose that our model may be relevant in studying the vortex liquid-vortex glass transition of interacting vortex lines in point-disordered type-II superconductors.Comment: 10 pages, 3 figure

    Interfacial Tensions near Critical Endpoints: Experimental Checks of EdGF Theory

    Full text link
    Predictions of the extended de Gennes-Fisher local-functional theory for the universal scaling functions of interfacial tensions near critical endpoints are compared with experimental data. Various observations of the binary mixture isobutyric acid ++ water are correlated to facilitate an analysis of the experiments of Nagarajan, Webb and Widom who observed the vapor-liquid interfacial tension as a function of {\it both} temperature and density. Antonow's rule is confirmed and, with the aid of previously studied {\it universal amplitude ratios}, the crucial analytic ``background'' contribution to the surface tension near the endpoint is estimated. The residual singular behavior thus uncovered is consistent with the theoretical scaling predictions and confirms the expected lack of symmetry in (TTc)(T-T_c). A searching test of theory, however, demands more precise and extensive experiments; furthermore, the analysis highlights, a previously noted but surprising, three-fold discrepancy in the magnitude of the surface tension of isobutyric acid ++ water relative to other systems.Comment: 6 figure

    Off-Diagonal Long Range Order and Scaling in a Disordered Quantum Hall System

    Full text link
    We have numerically studied the bosonic off-diagonal long range order, introduced by Read to describe the ordering in ideal quantum Hall states, for noninteracting electrons in random potentials confined to the lowest Landau level. We find that it also describes the ordering in disordered quantum Hall states: the proposed order parameter vanishes in the disordered (σxy=0\sigma_{xy}=0) phase and increases continuously from zero in the ordered (σxy=e2/h\sigma_{xy}=e^2/h) phase. We study the scaling of the order parameter and find that it is consistent with that of the one-electron Green's function.Comment: 10 pages and 4 figures, Revtex v3.0, UIUC preprint P-94-03-02

    Universal Scaling of Strong-Field Localization in an Integer Quantum Hall Liquid

    Full text link
    We study the Landau level localization and scaling properties of a disordered two-dimensional electron gas in the presence of a strong external magnetic field. The impurities are treated as random distributed scattering centers with parameterized potentials. Using a transfer matrix for a finite-width strip geometry, we calculate the localization length as a function of system size and electron energy. The finite-size localization length is determined by calculating the Lyapunov exponents of the transfer matrix. A detailed finite-size scaling analysis is used to study the critical behavior near the center of the Landau bands. The influence of varying the impurity concentration, the scattering potential range and its nature, and the Landau level index on the scaling behavior and on the critical exponent is systematically investigated. Particular emphasis is put on studying the effects of finite range of the disorder potential and Landau level coupling on the quantum localization behavior. Our numerical results, which are carried out on systems much larger than those studied before, indicate that pure δ\delta-function disorder in the absence of any Landau level coupling gives rise to non-universal localization properties with the critical exponents in the lowest two Landau levels being substantially different. Inclusion of a finite potential range and/or Landau level mixing may be essential in producing universality in the localization.Comment: 28 pages, Latex, 17 figures (available upon request), #phd0

    Dual superfluid-Bose glass critical point in two dimensions and the universal conductivity

    Full text link
    We study the continuum version of the dual theory for a system of two-dimensional, zero temperature, disordered bosons, interacting with short range repulsion and at a commensurate density. The dual theory, which describes vortices in the bosonic ground state, and has a form of 3D classical scalar electrodynamics in random, correlated magnetic field, admits a new disordered critical point within RG calculation at fixed dimension. The universal conductivity and the critical exponents at the superfluid-Bose glass critical point are calculated as series in fixed-point values of the dual coupling constants, to the lowest non-trivial order: σc=0.25(2e)2/h\sigma_c = 0.25 (2e)^2 /h, ν=1.38\nu=1.38 and z=1.93z=1.93. The comparison with numerical results and experiments is discussed.Comment: 8 pages, LaTex, some clarifications and references adde

    Anisotropic Magnetoconductance in Quench-Condensed Ultrathin Beryllium Films

    Full text link
    Near the superconductor-insulator (S-I) transition, quench-condensed ultrathin Be films show a large magnetoconductance which is highly anisotropic in the direction of the applied field. Film conductance can drop as much as seven orders of magnitude in a weak perpendicular field (< 1 T), but is insensitive to a parallel field in the same field range. We believe that this negative magnetoconductance is due to the field de-phasing of the superconducting pair wavefunction. This idea enables us to extract the finite superconducting phase coherence length in nearly superconducting films. Our data indicate that this local phase coherence persists even in highly insulating films in the vicinity of the S-I transition.Comment: 4 pages, 4 figure RevTex, Typos Correcte

    Passive scalars, random flux, and chiral phase fluids

    Full text link
    We study the two-dimensional localization problem for (i) a classical diffusing particle advected by a quenched random mean-zero vorticity field, and (ii) a quantum particle in a quenched random mean-zero magnetic field. Through a combination of numerical and analytic techniques we argue that both systems have extended eigenstates at a special point in the spectrum, EcE_c, where a sublattice decomposition obtains. In a neighborhood of this point, the Lyapunov exponents of the transfer-matrices acquire ratios characteristic of conformal invariance allowing an indirect determination of 1/r1/r for the typical spatial decay of eigenstates.Comment: use revtex, two-column, 4 pages, 5 postscript figures, submitted to PR

    Low Temperature Expansions for Potts Models

    Full text link
    On simple cubic lattices, we compute low temperature series expansions for the energy, magnetization and susceptibility of the three-state Potts model in D=2 and D=3 to 45 and 39 excited bonds respectively, and the eight-state Potts model in D=2 to 25 excited bonds. We use a recursive procedure which enumerates states explicitly. We analyze the series using Dlog Pade analysis and inhomogeneous differential approximants.Comment: (17 pages + 8 figures
    corecore