1,114 research outputs found
History effect in inhomogeneous superconductors
A model was proposed to account for a new kind of history effect in the
transport measurement of a sample with inhomogeneous flux pinning coupled with
flux creep. The inhomogeneity of flux pinning was described in terms of
alternating weak pinning (lower jc) and strong pinning region (higher jc). The
flux creep was characterized by logarithmic barrier. Based on this model, we
numerically observed the same clockwise V-I loops as reported in references.
Moreover, we predicted behaviors of the V-I loop at different sweeping rates of
applied current dI/dt or magnetic fields Ba, etc. Electric transport
measurement was performed in Ag-sheathed Bi2-xPbxSr2Ca2Cu3Oy tapes immersed in
liquid nitrogen with and without magnetic fields. V-I loop at certain dI/dt and
Ba was observed. It is found that the area of the loop is more sensitive to
dI/dt than to Ba, which is in agreement well with our numerical results.Comment: To appear in Phys Rev B, October 1 Issu
Critical magnetic fluctuations induced superconductivity and residual density of states in superconductor
We propose the multiband extension of the spin-fermion model to address the
superconducting d-wave pairing due to magnetic interaction near critical point.
We solve the unrestricted gap equation with a general d-wave symmetry gap and
find that divergent magnetic correlation length leads to the very
unharmonic shape of the gap function with shallow gap regions near nodes. These
regions are extremely sensitive to disorder. Small impurity concentration
induces substantial residual density of states. We argue that we can understand
the large value and its pressure
dependence of the recently discovered superconductor under pressure
within this approach.Comment: 5 figure
N-Site approximations and CAM analysis for a stochastic sandpile
I develop n-site cluster approximations for a stochastic sandpile in one
dimension. A height restriction is imposed to limit the number of states: each
site can harbor at most two particles (height z_i \leq 2). (This yields a
considerable simplification over the unrestricted case, in which the number of
states per site is unbounded.) On the basis of results for n \leq 11 sites, I
estimate the critical particle density as zeta_c = 0.930(1), in good agreement
with simulations. A coherent anomaly analysis yields estimates for the order
parameter exponent [beta = 0.41(1)] and the relaxation time exponent (nu_||
\simeq 2.5).Comment: 12 pages, 7 figure
Critical behavior of a one-dimensional fixed-energy stochastic sandpile
We study a one-dimensional fixed-energy version (that is, with no input or
loss of particles), of Manna's stochastic sandpile model. The system has a
continuous transition to an absorbing state at a critical value of
the particle density. Critical exponents are obtained from extensive
simulations, which treat both stationary and transient properties. In contrast
with other one-dimensional sandpiles, the model appears to exhibit finite-size
scaling, though anomalies exist in the scaling of relaxation times and in the
approach to the stationary state. The latter appear to depend strongly on the
nature of the initial configuration. The critical exponents differ from those
expected at a linear interface depinning transition in a medium with point
disorder, and from those of directed percolation.Comment: 15 pages, 11 figure
Activated Random Walkers: Facts, Conjectures and Challenges
We study a particle system with hopping (random walk) dynamics on the integer
lattice . The particles can exist in two states, active or
inactive (sleeping); only the former can hop. The dynamics conserves the number
of particles; there is no limit on the number of particles at a given site.
Isolated active particles fall asleep at rate , and then remain
asleep until joined by another particle at the same site. The state in which
all particles are inactive is absorbing. Whether activity continues at long
times depends on the relation between the particle density and the
sleeping rate . We discuss the general case, and then, for the
one-dimensional totally asymmetric case, study the phase transition between an
active phase (for sufficiently large particle densities and/or small )
and an absorbing one. We also present arguments regarding the asymptotic mean
hopping velocity in the active phase, the rate of fixation in the absorbing
phase, and survival of the infinite system at criticality. Using mean-field
theory and Monte Carlo simulation, we locate the phase boundary. The phase
transition appears to be continuous in both the symmetric and asymmetric
versions of the process, but the critical behavior is very different. The
former case is characterized by simple integer or rational values for critical
exponents (, for example), and the phase diagram is in accord with
the prediction of mean-field theory. We present evidence that the symmetric
version belongs to the universality class of conserved stochastic sandpiles,
also known as conserved directed percolation. Simulations also reveal an
interesting transient phenomenon of damped oscillations in the activity
density
Local versus Nonlocal Order Parameter Field Theories for Quantum Phase Transitions
General conditions are formulated that allow to determine which quantum phase
transitions in itinerant electron systems can be described by a local
Landau-Ginzburg-Wilson or LGW theory solely in terms of the order parameter. A
crucial question is the degree to which the order parameter fluctuations couple
to other soft modes. Three general classes of zero-wavenumber order parameters,
in the particle-hole spin-singlet and spin-triplet channels, and in the
particle-particle channel, respectively, are considered. It is shown that the
particle-hole spin-singlet class does allow for a local LGW theory, while the
other two classes do not. The implications of this result for the critical
behavior at various quantum phase transitions are discussed, as is the
connection with nonanalyticities in the wavenumber dependence of order
parameter susceptibilities in the disordered phase.Comment: 9 pp., LaTeX, no figs, final version as publishe
Avalanches and the Renormalization Group for Pinned Charge-Density Waves
The critical behavior of charge-density waves (CDWs) in the pinned phase is
studied for applied fields increasing toward the threshold field, using
recently developed renormalization group techniques and simulations of
automaton models. Despite the existence of many metastable states in the pinned
state of the CDW, the renormalization group treatment can be used successfully
to find the divergences in the polarization and the correlation length, and, to
first order in an expansion, the diverging time scale. The
automaton models studied are a charge-density wave model and a ``sandpile''
model with periodic boundary conditions; these models are found to have the
same critical behavior, associated with diverging avalanche sizes. The
numerical results for the polarization and the diverging length and time scales
in dimensions are in agreement with the analytical treatment. These
results clarify the connections between the behaviour above and below
threshold: the characteristic correlation lengths on both sides of the
transition diverge with different exponents. The scaling of the distribution of
avalanches on the approach to threshold is found to be different for automaton
and continuous-variable models.Comment: 29 pages, 11 postscript figures included, REVTEX v3.0 (dvi and PS
files also available by anonymous ftp from external.nj.nec.com in directory
/pub/alan/cdwfigs
Split transition in ferromagnetic superconductors
The split superconducting transition of up-spin and down-spin electrons on
the background of ferromagnetism is studied within the framework of a recent
model that describes the coexistence of ferromagnetism and superconductivity
induced by magnetic fluctuations. It is shown that one generically expects the
two transitions to be close to one another. This conclusion is discussed in
relation to experimental results on URhGe. It is also shown that the magnetic
Goldstone modes acquire an interesting structure in the superconducting phase,
which can be used as an experimental tool to probe the origin of the
superconductivity.Comment: REVTeX4, 15 pp, 7 eps fig
Bose-Einstein Condensate in Weak 3d Isotropic Speckle Disorder
The effect of a weak three-dimensional (3d) isotropic laser speckle disorder
on various thermodynamic properties of a dilute Bose gas is considered at zero
temperature. First, we summarize the derivation of the autocorrelation function
of laser speckles in 1d and 2d following the seminal work of Goodman. The goal
of this discussion is to show that a Gaussian approximation of this function,
proposed in some recent papers, is inconsistent with the general background of
laser speckle theory. Then we propose a possible experimental realization for
an isotropic 3d laser speckle potential and derive its corresponding
autocorrelation function. Using a Fourier transform of that function, we
calculate both condensate depletion and sound velocity of a Bose-Einstein
condensate as disorder ensemble averages of such a weak laser speckle potential
within a perturbative solution of the Gross-Pitaevskii equation. By doing so,
we reproduce the expression of the normalfluid density obtained earlier within
the treatment of Landau. This physically transparent derivation shows that
condensate particles, which are scattered by disorder, form a gas of
quasiparticles which is responsible for the normalfluid component
Disordered Type-II Superconductors: A Universal Phase Diagram for Low-T Systems
A universal phase diagram for weakly pinned low-T type-II superconductors
is revisited and extended with new proposals. The low-temperature ``Bragg
glass'' phase is argued to transform first into a disordered, glassy phase upon
heating. This glassy phase, a continuation of the high-field equilibrium vortex
glass phase, then melts at higher temperatures into a liquid. This proposal
provides an explanation for the anomalies observed in the peak effect regime of
2H-NbSe and several other low-T materials which is independent of the
microscopic mechanisms of superconductivity in these systems.Comment: 23 pages, 9 figure
- …