1,302 research outputs found
Modeling and Aiding Intuition: Introduction to the Commentary Section
This section of JARMAC includes a series of commentaries on articles published in the September, 2015, special issue of JARMAC: "Modeling and aiding intuition in organizational decision making" (Marewski & Hoffrage, 2015). The commentaries focus on research programs such as naturalistic decision making, heuristics-and-biases, ACT-R, and CLARION. They feature topics ranging from evolution to decision styles. In this introduction, we provide a brief overview of those contributions, alongside with concluding words on this project of pulling together multiple and very different strands of research on intuition
Soluble `Supersymmetric' Quantum XY Model
We present a `supersymmetric' modification of the -dimensional quantum
rotor model whose ground state is exactly soluble. The model undergoes a
vortex-binding transition from insulator to metal as the rotor coupling is
varied. The Hamiltonian contains three-site terms which are relevant: they
change the universality class of the transition from that of the ()--- to
the -dimensional classical XY model. The metallic phase has algebraic ODLRO
but the superfluid density is identically zero. Variational wave functions for
single-particle and collective excitations are presented.Comment: 12 pages, REVTEX 3.0, IUCM93-00
Universality of the Crossing Probability for the Potts Model for q=1,2,3,4
The universality of the crossing probability of a system to
percolate only in the horizontal direction, was investigated numerically by
using a cluster Monte-Carlo algorithm for the -state Potts model for
and for percolation . We check the percolation through
Fortuin-Kasteleyn clusters near the critical point on the square lattice by
using representation of the Potts model as the correlated site-bond percolation
model. It was shown that probability of a system to percolate only in the
horizontal direction has universal form for
as a function of the scaling variable . Here,
is the probability of a bond to be closed, is the
nonuniversal crossing amplitude, is the nonuniversal metric factor,
is the nonuniversal scaling index, is the correlation
length index.
The universal function . Nonuniversal scaling factors
were found numerically.Comment: 15 pages, 3 figures, revtex4b, (minor errors in text fixed,
journal-ref added
The Bose-Hubbard model is QMA-complete
The Bose-Hubbard model is a system of interacting bosons that live on the
vertices of a graph. The particles can move between adjacent vertices and
experience a repulsive on-site interaction. The Hamiltonian is determined by a
choice of graph that specifies the geometry in which the particles move and
interact. We prove that approximating the ground energy of the Bose-Hubbard
model on a graph at fixed particle number is QMA-complete. In our QMA-hardness
proof, we encode the history of an n-qubit computation in the subspace with at
most one particle per site (i.e., hard-core bosons). This feature, along with
the well-known mapping between hard-core bosons and spin systems, lets us prove
a related result for a class of 2-local Hamiltonians defined by graphs that
generalizes the XY model. By avoiding the use of perturbation theory in our
analysis, we circumvent the need to multiply terms in the Hamiltonian by large
coefficients
Feynman's Propagator Applied to Network Models of Localization
Network models of dirty electronic systems are mapped onto an interacting
field theory of lower dimensionality by intepreting one space dimension as
time. This is accomplished via Feynman's interpretation of anti-particles as
particles moving backwards in time. The method developed maps calculation of
the moments of the Landauer conductance onto calculation of correlation
functions of an interacting field theory of bosons and fermions. The resulting
field theories are supersymmetric and closely related to the supersymmetric
spin-chain representations of network models recently discussed by various
authors. As an application of the method, the two-edge Chalker-Coddington model
is shown to be Anderson localized, and a delocalization transition in a related
two-edge network model (recently discussed by Balents and Fisher) is studied by
calculation of the average Landauer conductance.Comment: Latex, 14 pages, 2 fig
High resolution studies of low-energy electron attachment to SF5Cl: Product anions and absolute cross sections
Low energy electron attachment to SFCl was studied at high energy resolution by mass spectrometric detection of the product anions. Two variants of the laser photoelectron attachment (LPA) technique (Kaiserslautern) were used for determining the threshold behaviour of the yield for SF formation at about 1 meV resolution, and to investigate the relative cross sections for Cl, FCl, and SF formation towards higher energies (up to 1 eV) at about 20 meV resolution. Thermal swarm measurements (Birmingham) were used to place the relative LPA cross sections on an absolute scale. A trochoidal electron monochromator (Innsbruck) was used for survey measurements of the relative cross sections for the different product anions over the energy range of 0-14 eV with a resolution of 0.30 eV. Combined with earlier beam data (taken at Berlin, J. Chem. Phys. 88 (1988) 149), the present experimental results provide a detailed set of partial cross sections for anion formation in low-energy electron collisions with SFCl
Response to Comment on âMycorrhizal association as a primary control of the CO 2 fertilization effectâ
Norby et al. center their critique on the design of the data set and the response variable used. We address these criticisms and reinforce the conclusion that plants that associate with ectomycorrhizal fungi exhibit larger biomass and growth responses to elevated CO2 compared with plants that associate with arbuscular mycorrhizae
Variational theory of flux-line liquids
We formulate a variational (Hartree like) description of flux line liquids
which improves on the theory we developed in an earlier paper [A.M. Ettouhami,
Phys. Rev. B 65, 134504 (2002)]. We derive, in particular, how the massive term
confining the fluctuations of flux lines varies with temperature and show that
this term vanishes at high enough temperatures where the vortices behave as
freely fluctuating elastic lines.Comment: 10 pages, 1 postscript figur
Application of Minimal Subtraction Renormalization to Crossover Behavior near the He Liquid-Vapor Critical Point
Parametric expressions are used to calculate the isothermal susceptibility,
specific heat, order parameter, and correlation length along the critical
isochore and coexistence curve from the asymptotic region to crossover region.
These expressions are based on the minimal-subtraction renormalization scheme
within the model. Using two adjustable parameters in these
expressions, we fit the theory globally to recently obtained experimental
measurements of isothermal susceptibility and specific heat along the critical
isochore and coexistence curve, and early measurements of coexistence curve and
light scattering intensity along the critical isochore of He near its
liquid-vapor critical point. The theory provides good agreement with these
experimental measurements within the reduced temperature range
Scaling in the Lattice Gas Model
A good quality scaling of the cluster size distributions is obtained for the
Lattice Gas Model using the Fisher's ansatz for the scaling function. This
scaling identifies a pseudo-critical line in the phase diagram of the model
that spans the whole (subcritical to supercritical) density range. The
independent cluster hypothesis of the Fisher approach is shown to describe
correctly the thermodynamics of the lattice only far away from the critical
point.Comment: 4 pages, 3 figure
- âŠ