1,430 research outputs found
Canopy Management to Improve Grape Yield and Wine Quality - Principles and Practices
This paper reviews the subject of canopy management with an attempt to develop principles. These principles provide guidelines for canopy surface area amount; spacing between canopies; within canopy shade, especially for the fruiting/ renewal zone; balance between fruit and shoot growth; and uniformity of location of fruit/renewal zones, shoot tips and cane bases. Field techniques of point quadrat analysis and canopy scoring are introduced as an aid to defining problem canopies. These techniques are cheap, quick and effective. A set of twenty-one numeric indices and descriptors to assess winegrape canopies is then presented as a winegrape canopy ideotype, which can be further used as management guidelines. Recent publications are reviewed from various aspects of canopy management. These include vigour control, shoot trimming, leaf removal in the fruit zone and training system responses. The paper concludes with presentation of the authors' unpublished data on the effects of canopy microclimate on yield and wine quality. The trial was conducted with the cultivar Cabernet franc on a deep, fertile soil in a cool, high rainfall region. Canopy division using the Ruakura Twin Two Tier doubled yield compared to dense, vertical shoot positioned canopies which are common in New Zealand. Shade caused reduction in all yield components, and also delayed fruit ripening and reduced wine quality. Similar results were obtained by comparing fruit production at different heights with the Te Kauwhata Three Tier trellis system, where lower tiers were shaded at the canopy exterior. The results confirm that grape yield and wine quaiity can be simultaneously increased by improved canopy management of shaded vineyards
Scaling in a continuous time model for biological aging
In this paper we consider a generalization to the asexual version of the
Penna model for biological aging, where we take a continuous time limit. The
genotype associated to each individual is an interval of real numbers over
which Dirac --functions are defined, representing genetically
programmed diseases to be switched on at defined ages of the individual life.
We discuss two different continuous limits for the evolution equation and two
different mutation protocols, to be implemented during reproduction. Exact
stationary solutions are obtained and scaling properties are discussed.Comment: 10 pages, 6 figure
How good are your fits? Unbinned multivariate goodness-of-fit tests in high energy physics
Multivariate analyses play an important role in high energy physics. Such
analyses often involve performing an unbinned maximum likelihood fit of a
probability density function (p.d.f.) to the data. This paper explores a
variety of unbinned methods for determining the goodness of fit of the p.d.f.
to the data. The application and performance of each method is discussed in the
context of a real-life high energy physics analysis (a Dalitz-plot analysis).
Several of the methods presented in this paper can also be used for the
non-parametric determination of whether two samples originate from the same
parent p.d.f. This can be used, e.g., to determine the quality of a detector
Monte Carlo simulation without the need for a parametric expression of the
efficiency.Comment: 32 pages, 12 figure
Recommended from our members
Impacts of Western Area Power Administration`s power marketing alternatives on retail electricity rates and utility financial viability
Changes in power contract terms for customers of Western`s Salt Lake City Area Office affect electricity rates for consumers of electric power in Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. The impacts of electricity rate changes on consumers are studied by measuring impacts on the rates charged by individual utility systems, determining the average rates in regional areas, and conducting a detailed rate analysis of representative utility systems. The primary focus is an evaluation of the way retail electricity rates for Western`s preference customers vary with alternative pricing and power quantity commitment terms under Western`s long-term contracts to sell power (marketing programs). Retail rate impacts are emphasized because changes in the price of electricity are the most direct economic effect on businesses and residences arising from different Western contractual and operational policies. Retail rates are the mechanism by which changes in cost associated with Western`s contract terms are imposed on ultimate consumers, and rate changes determine the dollar level of payments for electric power incurred by the affected consumers. 41 figs., 9 tabs
Pocket Monte Carlo algorithm for classical doped dimer models
We study the correlations of classical hardcore dimer models doped with
monomers by Monte Carlo simulation. We introduce an efficient cluster
algorithm, which is applicable in any dimension, for different lattices and
arbitrary doping. We use this algorithm for the dimer model on the square
lattice, where a finite density of monomers destroys the critical confinement
of the two-monomer problem. The monomers form a two-component plasma located in
its high-temperature phase, with the Coulomb interaction screened at finite
densities. On the triangular lattice, a single pair of monomers is not
confined. The monomer correlations are extremely short-ranged and hardly change
with doping.Comment: 6 pages, REVTeX
Short-Range Interactions and Scaling Near Integer Quantum Hall Transitions
We study the influence of short-range electron-electron interactions on
scaling behavior near the integer quantum Hall plateau transitions. Short-range
interactions are known to be irrelevant at the renormalization group fixed
point which represents the transition in the non-interacting system. We find,
nevertheless, that transport properties change discontinuously when
interactions are introduced. Most importantly, in the thermodynamic limit the
conductivity at finite temperature is zero without interactions, but non-zero
in the presence of arbitrarily weak interactions. In addition, scaling as a
function of frequency, , and temperature, , is determined by the
scaling variable (where is the exponent for the temperature
dependence of the inelastic scattering rate) and not by , as it would
be at a conventional quantum phase transition described by an interacting fixed
point. We express the inelastic exponent, , and the thermal exponent, ,
in terms of the scaling dimension, , of the interaction strength
and the dynamical exponent (which has the value ), obtaining
and .Comment: 9 pages, 4 figures, submitted to Physical Review
Superconducting Coherence and the Helicity Modulus in Vortex Line Models
We show how commonly used models for vortex lines in three dimensional
superconductors can be modified to include k=0 excitations. We construct a
formula for the k=0 helicity modulus in terms of fluctuations in the projected
area of vortex loops. This gives a convenient criterion for the presence of
superconducting coherence. We also present Monte Carlo simulations of a
continuum vortex line model for the melting of the Abrikosov vortex lattice in
pure YBCO.Comment: 4 pages RevTeX, 2 eps figures included using eps
One Dimensional Chain with Long Range Hopping
The one-dimensional (1D) tight binding model with random nearest neighbor
hopping is known to have a singularity of the density of states and of the
localization length at the band center. We study numerically the effects of
random long range (power-law) hopping with an ensemble averaged magnitude
\expectation{|t_{ij}|} \propto |i-j|^{-\sigma} in the 1D chain, while
maintaining the particle-hole symmetry present in the nearest neighbor model.
We find, in agreement with results of position space renormalization group
techniques applied to the random XY spin chain with power-law interactions,
that there is a change of behavior when the power-law exponent becomes
smaller than 2
Calculation of ground states of four-dimensional +or- J Ising spin glasses
Ground states of four-dimensional (d=4) EA Ising spin glasses are calculated
for sizes up to 7x7x7x7 using a combination of a genetic algorithm and
cluster-exact approximation. The ground-state energy of the infinite system is
extrapolated as e_0=-2.095(1). The ground-state stiffness (or domain wall)
energy D is calculated. A D~L^{\Theta} behavior with \Theta=0.65(4) is found
which confirms that the d=4 model has an equilibrium spin-glass-paramagnet
transition for non-zero T_c.Comment: 5 pages, 3 figures, 31 references, revtex; update of reference
Carbon isotopic characterisation and oxidation of UK landfill methane emissions by atmospheric measurements
Biological oxidation of methane in landfill cover material can be calculated from the carbon isotopic signature (δ13CCH4) of emitted CH4. Enhanced microbial consumption of methane in the aerobic portion of the landfill cover is indicated by a shift to heavier (less depleted) isotopic values in the residual methane emitted to air. This study was conducted at four landfill sites in southwest England. Measurement of CH4 using a mobile vehicle mounted instrument at the four sites was coupled with Flexfoil bag sampling of ambient air for high-precision isotope analysis. Gas well collection systems were sampled to estimate landfill oxidised proportion. Closed or active status, seasonal variation, cap stripping and site closure impact on landfill isotopic signature were also assessed. The δ13CCH4 values ranged from −60 to −54‰, with an average value of −57 ± 2‰. Methane emissions from active cells are more depleted in 13C than closed sites. Methane oxidation, estimated from the isotope fractionation, ranged from 2.6 to 38.2%, with mean values of 9.5% for active and 16.2% for closed landfills, indicating that oxidised proportion is highly site specific
- …