92 research outputs found

    Mouse models of aneuploidy to understand chromosome disorders

    Get PDF
    An organism or cell carrying a number of chromosomes that is not a multiple of the haploid count is in a state of aneuploidy. This condition results in significant changes in the level of expression of genes that are gained or lost from the aneuploid chromosome(s) and most cases in humans are not compatible with life. However, a few aneuploidies can lead to live births, typically associated with deleterious phenotypes. We do not understand why phenotypes arise from aneuploid syndromes in humans. Animal models have the potential to provide great insight, but less than a handful of mouse models of aneuploidy have been made, and no ideal system exists in which to study the effects of aneuploidy per se versus those of raised gene dosage. Here, we give an overview of human aneuploid syndromes, the effects on physiology of having an altered number of chromosomes and we present the currently available mouse models of aneuploidy, focusing on models of trisomy 21 (which causes Down syndrome) because this is the most common, and therefore, the most studied autosomal aneuploidy. Finally, we discuss the potential role of carrying an extra chromosome on aneuploid phenotypes, independent of changes in gene dosage, and methods by which this could be investigated further

    Mouse models of neurodegeneration: Know your question, know your mouse

    Get PDF
    Many mutant mouse strains have been developed as models to investigate neurodegenerative disease in humans. However, variability in results among studies using these mouse strains has led to questions about the value of these models. Here, we appraise various mouse models for dissecting neurodegenerative disease mechanisms and emphasize the importance of asking appropriate research questions. In therapeutic studies, we suggest that understanding variability among and within mouse models is crucial for preventing translational failures in human patients

    Endosomal structure and APP biology are not altered in a preclinical mouse cellular model of Down syndrome

    Get PDF
    Individuals who have Down syndrome (trisomy 21) are at greatly increased risk of developing Alzheimer’s disease, characterised by the accumulation in the brain of amyloid-β plaques. Amyloid-β is a product of the processing of the amyloid precursor protein, encoded by the APP gene on chromosome 21. In Down syndrome the first site of amyloid-β accumulation is within endosomes, and changes to endosome biology occur early in Alzheimer’s disease. Here, we determine if primary mouse embryonic fibroblasts isolated from a mouse model of Down syndrome can be used to study endosome and APP cell biology. We report that in this cellular model, endosome number, size and APP processing are not altered, likely because APP is not dosage sensitive in the model, despite three copies of App

    Humanising the mouse genome piece by piece

    Get PDF
    To better understand human health and disease, researchers create a wide variety of mouse models that carry human DNA. With recent advances in genome engineering, the targeted replacement of mouse genomic regions with orthologous human sequences has become increasingly viable, ranging from finely tuned humanisation of individual nucleotides and amino acids to the incorporation of many megabases of human DNA. Here, we examine emerging technologies for targeted genomic humanisation, we review the spectrum of existing genomically humanised mouse models and the insights such models have provided, and consider the lessons learned for designing such models in the future

    Affordable optical clearing and immunolabelling in mouse brain slices

    Get PDF
    Traditional histological analysis is conducted on thin tissue sections, limiting the data capture from large tissue volumes to 2D profiles, and requiring stereological methods for 3D assessment. Recent advances in microscopical and tissue clearing methods have facilitated 3D reconstructions of tissue structure. However, staining of large tissue blocks remains a challenge, often requiring specialised and expensive equipment to clear and immunolabel tissue. Here, we present the Affordable Brain Slice Optical Clearing (ABSOC) method: a modified iDISCO protocol which enables clearing and immunolabeling of mouse brain slices up to 1 mm thick using inexpensive reagents and equipment, with no intensive expert training required. We illustrate the use of ABSOC in 1 mm C57BL/6J mouse coronal brain slices sectioned through the dorsal hippocampus and immunolabelled with an anti-calretinin antibody. The ABSOC method can be readily used for histological studies of mouse brain in order to move from the use of very thin tissue sections to large volumes of tissue - giving more representative analysis of biological samples, without the need for sampling of small regions only

    The effects of Cstb duplication on APP/amyloid-β pathology and cathepsin B activity in a mouse model

    Get PDF
    People with Down syndrome (DS), caused by trisomy of chromosome 21 have a greatly increased risk of developing Alzheimer's disease (AD). This is in part because of triplication of a chromosome 21 gene, APP. This gene encodes amyloid precursor protein, which is cleaved to form amyloid-β that accumulates in the brains of people who have AD. Recent experimental results demonstrate that a gene or genes on chromosome 21, other than APP, when triplicated significantly accelerate amyloid-β pathology in a transgenic mouse model of amyloid-β deposition. Multiple lines of evidence indicate that cysteine cathepsin activity influences APP cleavage and amyloid-β accumulation. Located on human chromosome 21 (Hsa21) is an endogenous inhibitor of cathepsin proteases, CYSTATIN B (CSTB) which is proposed to regulate cysteine cathepsin activity in vivo. Here we determined if three copies of the mouse gene Cstb is sufficient to modulate amyloid-β accumulation and cathepsin activity in a transgenic APP mouse model. Duplication of Cstb resulted in an increase in transcriptional and translational levels of Cstb in the mouse cortex but had no effect on the deposition of insoluble amyloid-β plaques or the levels of soluble or insoluble amyloid-β42, amyloid-β40, or amyloid-β38 in 6-month old mice. In addition, the increased CSTB did not alter the activity of cathepsin B enzyme in the cortex of 3-month or 6-month old mice. These results indicate that the single-gene duplication of Cstb is insufficient to elicit a disease-modifying phenotype in the dupCstb x tgAPP mice, underscoring the complexity of the genetic basis of AD-DS and the importance of multiple gene interactions in disease

    Alterations to Dendritic Spine Morphology, but Not Dendrite Patterning, of Cortical Projection Neurons in Tc1 and Ts1Rhr Mouse Models of Down Syndrome

    Get PDF
    Down Syndrome (DS) is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines - the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects

    Alterations to Dendritic Spine Morphology, but Not Dendrite Patterning, of Cortical Projection Neurons in Tc1 and Ts1Rhr Mouse Models of Down Syndrome

    Get PDF
    Down Syndrome (DS) is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines - the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects

    Transgenic and physiological mouse models give insights into different aspects of amyotrophic lateral sclerosis

    Get PDF
    A wide range of genetic mouse models is available to help researchers dissect human disease mechanisms. Each type of model has its own distinctive characteristics arising from the nature of the introduced mutation, as well as from the specific changes to the gene of interest. Here, we review the current range of mouse models with mutations in genes causative for the human neurodegenerative disease amyotrophic lateral sclerosis. We focus on the two main types of available mutants: transgenic mice and those that express mutant genes at physiological levels from gene targeting or from chemical mutagenesis. We compare the phenotypes for genes in which the two classes of model exist, to illustrate what they can teach us about different aspects of the disease, noting that informative models may not necessarily mimic the full trajectory of the human condition. Transgenic models can greatly overexpress mutant or wild-type proteins, giving us insight into protein deposition mechanisms, whereas models expressing mutant genes at physiological levels may develop slowly progressing phenotypes but illustrate early-stage disease processes. Although no mouse models fully recapitulate the human condition, almost all help researchers to understand normal and abnormal biological processes, providing that the individual characteristics of each model type, and how these may affect the interpretation of the data generated from each model, are considered and appreciated

    Association of dementia with mortality among adults with down syndrome older than 35 years

    Get PDF
    Importance: This work quantifies the fatal burden of dementia associated with Alzheimer disease in individuals with Down syndrome (DS). Objective: To explore the association of dementia associated with Alzheimer disease with mortality and examine factors associated with dementia in adults with DS. Design, Settings and Participants: Prospective longitudinal study in a community setting in England. Data collection began March 29, 2012. Cases were censored on December 13, 2017. The potential sample consisted of all adults 36 years and older from the London Down Syndrome Consortium cohort with 2 data times and dementia status recorded (N = 300); 6 withdrew from study, 28 were lost to follow-up, and 55 had a single data collection point at time of analysis. The final sample consisted of 211 participants, with 503.92 person-years' follow-up. Exposures: Dementia status, age, sex, APOE genotype, level of intellectual disability, health variables, and living situation. Main Outcomes and Measures: Crude mortality rates, time to death, and time to dementia diagnosis with proportional hazards of predictors. Results: Of the 211 participants, 96 were women (45.5%) and 66 (31.3%) had a clinical dementia diagnosis. Twenty-seven participants (11 female; mean age at death, 56.74 years) died during the study period. Seventy percent had dementia. Crude mortality rates for individuals with dementia (1191.85 deaths per 10 000 person-years; 95% CI, 1168.49-1215.21) were 5 times higher than for those without (232.22 deaths per 10 000 person-years; 95% CI, 227.67-236.77). For those with dementia, APOE ε4 carriers had a 7-fold increased risk of death (hazard ratio [HR], 6.91; 95% CI, 1.756-27.195). For those without dementia, epilepsy with onset after age 36 years was associated with mortality (HR, 9.66; 95% CI, 1.59-58.56). APOE ε4 carriers (HR, 4.91; 95% CI, 2.53-9.56), adults with early-onset epilepsy (HR, 3.61; 95% CI, 1.12-11.60), multiple health comorbidities (HR, 1.956; 95% CI, 1.087-3.519), and those living with family (HR, 2.14; 95% CI, 1.08-4.20) received significantly earlier dementia diagnoses. Conclusions and Relevance: Dementia was associated with mortality in 70% of older adults with DS. APOE ε4 carriers and/or people with multiple comorbid health conditions were at increased risk of dementia and death, highlighting the need for good health care. For those who died without a dementia diagnosis, late-onset epilepsy was the only significant factor associated with death, raising questions about potentially undiagnosed dementia cases in this group
    • …
    corecore