715 research outputs found

    Proximity to a Nearly Superconducting Quantum Critical Liquid

    Full text link
    The coupling between superconductors and a quantum critical liquid that is nearly superconducting provides natural interpretation for the Josephson effect over unexpectedly long junctions, and the remarkable stripe-spacing dependence of the critical temperature in LSCO and YBCO superconductors.Comment: four two-column pages, no figure

    Quantum Correlated Interstitials and the Hall Resistivity of the Magnetically Induced Wigner Crystal

    Full text link
    We study a trial wavefunction for an interstitial in a Wigner crystal. We find that the electron correlations, ignored in a conventional Hartree-Fock treatment, dramatically lower the interstitial energy, especially at fillings close to an incompressible liquid state. The correlation between the interstitial electron and the lattice electrons at ν<1/m\nu <1/m is introduced by constructing a trial wave- function which bears a Jastrow factor of a Laughlin state at ν=1/m\nu=1/m. For fillings close to but just below ν=1/m\nu=1/m, we find that a perfect Wigner crystal becomes unstable against formation of such interstitials. It is argued that conduction due to correlated interstitials in the presence of weak disorder leads to the {\it classical} Hall resistivity, as seen experimentally.Comment: 10 pages, RevTe

    Avoided Critical Behavior in a Uniformly Frustrated System

    Full text link
    We study the effects of weak long-ranged antiferromagnetic interactions of strength QQ on a spin model with predominant short-ranged ferromagnetic interactions. In three dimensions, this model exhibits an avoided critical point in the sense that the critical temperature Tc(Q=0)T_c(Q=0) is strictly greater than limQ0Tc(Q)\lim_{Q\to 0} T_c(Q). The behavior of this system at temperatures less than Tc(Q=0)T_c(Q=0) is controlled by the proximity to the avoided critical point. We also quantize the model in a novel way to study the interplay between charge-density wave and superconducting order.Comment: 32 page Latex file, figures available from authors by reques

    The types of Mott insulator

    Full text link
    There are two classes of Mott insulators in nature, distinguished by their responses to weak doping. With increasing chemical potential, Type I Mott insulators undergo a first order phase transition from the undoped to the doped phase. In the presence of long-range Coulomb interactions, this leads to an inhomogeneous state exhibiting ``micro-phase separation.'' In contrast, in Type II Mott insulators charges go in continuously above a critical chemical potential. We show that if the insulating state has a broken symmetry, this increases the likelihood that it will be Type I. There exists a close analogy between these two types of Mott insulators and the familiar Type I and Type II superconductors

    Quantum vortex fluctuations in cuprate superconductors

    Full text link
    We study the effects of quantum vortex fluctuations in two-dimensional superconductors using a dual theory of vortices, and investigate the relevance to underdoped cuprates where the superconductor-insulator transition (SIT) is possibly driven by quantum vortex proliferation. We find that a broad enough phase fluctuation regime may exist for experimental observation of the quantum vortex fluctuations near SIT in underdoped cuprates. We propose that this scenario can be tested via pair-tunneling experiments which measure the characteristic resonances in the zero-temperature pair-field susceptibility in the vortex-proliferated insulating phase.Comment: RevTex 5 pages, 2 eps figures; expanded; to appear in Phys. Rev.

    Ring exchange, the Bose metal, and bosonization in two dimensions

    Full text link
    Motivated by the high-T_c cuprates, we consider a model of bosonic Cooper pairs moving on a square lattice via ring exchange. We show that this model offers a natural middle ground between a conventional antiferromagnetic Mott insulator and the fully deconfined fractionalized phase which underlies the spin-charge separation scenario for high-T_c superconductivity. We show that such ring models sustain a stable critical phase in two dimensions, the *Bose metal*. The Bose metal is a compressible state, with gapless but uncondensed boson and ``vortex'' excitations, power-law superconducting and charge-ordering correlations, and broad spectral functions. We characterize the Bose metal with the aid of an exact plaquette duality transformation, which motivates a universal low energy description of the Bose metal. This description is in terms of a pair of dual bosonic phase fields, and is a direct analog of the well-known one-dimensional bosonization approach. We verify the validity of the low energy description by numerical simulations of the ring model in its exact dual form. The relevance to the high-T_c superconductors and a variety of extensions to other systems are discussed, including the bosonization of a two dimensional fermionic ring model

    Mesoscopic phase separation in La2CuO4.02 - a 139La NQR study

    Full text link
    In crystals of La2CuO4.02 oxygen diffusion can be limited to such small length scales, that the resulting phase separation is invisible for neutrons. Decomposition of the 139La NQR spectra shows the existence of three different regions, of which one orders antiferromagnetically below 17K concomitantly with the onset of a weak superconductivity in the crystal. These regions are compared to the macroscopic phases seen previously in the title compound and the cluster-glass and striped phases reported for the underdoped Sr-doped cuprates.Comment: 4 pages, RevTeX, 5 figures, to be published in PR

    Quantum superconductor-metal transition

    Full text link
    We consider a system of superconducting grains embedded in a normal metal. At zero temperature this system exhibits a quantum superconductor-normal metal phase transition. This transition can take place at arbitrarily large conductance of the normal metal.Comment: 13 pages, 1 figure include

    Conductivity Due to Classical Phase Fluctuations in a Model For High-T_c Superconductors

    Full text link
    We consider the real part of the conductivity, \sigma_1(\omega), arising from classical phase fluctuations in a model for high-T_c superconductors. We show that the frequency integral of that conductivity, \int_0^\infty \sigma_1 d\omega, is non-zero below the superconducting transition temperature TcT_c, provided there is some quenched disorder in the system. Furthermore, for a fixed amount of quenched disorder, this integral at low temperatures is proportional to the zero-temperature superfluid density, in agreement with experiment. We calculate \sigma_1(\omega) explicitly for a model of overdamped phase fluctuations.Comment: 4pages, 2figures, submitted to Phys.Rev.

    Phase Transitions in One-Dimensional Truncated Bosonic Hubbard Model and Its Spin-1 Analog

    Full text link
    We study one-dimensional truncated (no more than 2 particles on a site) bosonic Hubbard model in both repulsive and attractive regimes by exact diagonalization and exact worldline Monte Carlo simulation. In the commensurate case (one particle per site) we demonstrate that the point of Mott-insulator -- superfluid transition, (U/t)c=0.50±0.05(U/t)_c=0.50\pm 0.05, is remarkably far from that of the full model. In the attractive region we observe the phase transition from one-particle superfluid to two-particle one. The paring gap demonstrates a linear behavior in the vicinity of the critical point. The critical state features marginal response to the gauge phase. We argue that the two-particle superfluid is a macroscopic analog of a peculiar phase observed earlier in a spin-1 model with axial anisotropy.Comment: Revtex, 5 pages, 9 figures. Submitted to Phys. Rev.
    corecore