1,247 research outputs found

    Conduction in jammed systems of tetrahedra

    Full text link
    Control of transport processes in composite microstructures is critical to the development of high performance functional materials for a variety of energy storage applications. The fundamental process of conduction and its control through the manipulation of granular composite attributes (e.g., grain shape) are the subject of this work. We show that athermally jammed packings of tetrahedra with ultra-short range order exhibit fundamentally different pathways for conduction than those in dense sphere packings. Highly resistive granular constrictions and few face-face contacts between grains result in short-range distortions from the mean temperature field. As a consequence, 'granular' or differential effective medium theory predicts the conductivity of this media within 10% at the jamming point; in contrast, strong enhancement of transport near interparticle contacts in packed-sphere composites results in conductivity divergence at the jamming onset. The results are expected to be particularly relevant to the development of nanomaterials, where nanoparticle building blocks can exhibit a variety of faceted shapes.Comment: 9 pages, 10 figure

    HIV-1 reverse transcriptase mutations that confer decreased in vitro susceptibility to anti-RT DNA aptamer RT1t49 confer cross resistance to other anti-RT aptamers but not to standard RT inhibitors

    Get PDF
    RNA and DNA aptamers specific for HIV-1 reverse transcriptase (RT) can inhibit reverse transcription in vitro. RNA aptamers have been shown to potently block HIV-1 replication in culture. We previously reported mutants of HIV-1 RT with substitutions N255D or N265D that display resistance to the DNA aptamer RT1t49. Variant viruses bearing these mutations singly or in combination were compromised for replication. In order to address the wider applicability of such aptamers, HIV-1 RT variants containing the N255D, N265D or both (Dbl) were tested for the extent of their cross-resistance to other DNA/RNA aptamers as well as to other RT inhibitors. Both N265D and Dbl RTs were resistant to most aptamers tested. N255D mutant displayed mild resistance to two of the DNA aptamers, little change in sensitivity to three and hypersensitivity to one. Although all mutants displayed wild type-like ribonuclease H activity, their activity was compromised under conditions that prevent re-binding. This suggests that the processivity defect caused by these mutations can also affect RNase H function thus contributing further to the replication defect in mutant viruses. These results indicate that mutants conferring resistance to anti-RT aptamers significantly affect many HIV-1 RT enzymatic activities, which could contribute to preventing the development of resistance in vivo. If such mutations were to arise in vivo, our results suggest that variant viruses should remain susceptible to many existing anti-RT inhibitors. This result was tempered by the observation that NRTI-resistance mutations such as K65R can confer resistance to some anti-RT aptamers

    Front Matter

    Get PDF

    Variable-cell method for stress-controlled jamming of athermal, frictionless grains

    Get PDF
    A new method is introduced to simulate jamming of polyhedral grains under controlled stress that incorporates global degrees of freedom through the metric tensor of a periodic cell containing grains. Jamming under hydrostatic/isotropic stress and athermal conditions leads to a precise definition of the ideal jamming point at zero shear stress. The structures of tetrahedra jammed hydrostatically exhibit less translational order and lower jamming-point density than previously described `maximally random jammed' hard tetrahedra. Under the same conditions, cubes jam with negligible nematic order. Grains with octahedral symmetry jam in the large-system limit with an abundance of face-face contacts in the absence of nematic order. For sufficiently large face-face contact number, percolating clusters form that span the entire simulation box. The response of hydrostatically jammed tetrahedra and cubes to shear-stress perturbation is also demonstrated with the variable-cell method.Comment: 10 pages, 8 figure

    Thin Electrical Double Layer Simulation of Micro-electrochemical Supercapacitors

    Get PDF
    The deteriorating state of the environment has drawn many people to hybrid electric vehicles. Electrochemical micro-supercapacitors are of interest in this field because of their high power density relative to other micro-power sources. However, little is known about how the properties of the electrolyte used affect the performance of such devices. The first step of this investigation was to use thermoreflectance microscopy to measure the temperature change of the electrodes while charging and discharging supercapacitor samples. The components of these samples were graphitic petal electrodes with a Ti/Au covering (for enhanced light reflectance) on a SiO2 base, with a PVA and H2SO4 polymer gel electrolyte. These experiments showed cooling of over 10°C. In order to better understand these results and the underlying mechanism of supercapacitors, a model to predict their behavior was needed. Therefore, a description of the dynamic and equilibrium behavior of ions in thin electrical double layers was constructed. The most accurate model was found to be the Poisson-Boltzmann equation modified to account for steric effects. MATLAB code was written and tested against previous theoretical research and will be published on nanoHUB. This will later be expanded to account for other supercapacitor features such as pseudocapacitance and high surface area of activated carbon electrodes
    corecore