646 research outputs found
Predicting the long time dynamic heterogeneity in a supercooled liquid on the basis of short time heterogeneities
We report that the local Debye-Waller factor in a simulated 2D glass-forming
mixture exhibits significant spatial heterogeneities and that these short time
fluctuations provide an excellent predictor of the spatial distribution of the
long time dynamic propensities [Phys.Rev.Lett. 93, 135701 (2004)]. In contrast,
the potential energy per particle of the inherent structure does not correlate
well with the spatially distributed dynamics
Asymptotics of the Farey Fraction Spin Chain Free Energy at the Critical Point
We consider the Farey fraction spin chain in an external field . Using
ideas from dynamical systems and functional analysis, we show that the free
energy in the vicinity of the second-order phase transition is given,
exactly, by
Here is a reduced
temperature, so that the deviation from the critical point is scaled by the
Lyapunov exponent of the Gauss map, . It follows that
determines the amplitude of both the specific heat and susceptibility
singularities. To our knowledge, there is only one other microscopically
defined interacting model for which the free energy near a phase transition is
known as a function of two variables.
Our results confirm what was found previously with a cluster approximation,
and show that a clustering mechanism is in fact responsible for the transition.
However, the results disagree in part with a renormalisation group treatment
Collapse of the vortex-lattice inductance and shear modulus at the melting transition in untwinned
The complex resistivity of the vortex lattice in an
untwinned crystal of 93-K has been measured at frequencies
from 100 kHz to 20 MHz in a 2-Tesla field ,
using a 4-probe RF transmission technique that enables continuous measurements
versus and temperature . As is increased, the inductance increases steeply to a cusp
at the melting temperature , and then undergoes a steep collapse
consistent with vanishing of the shear modulus . We discuss in detail
the separation of the vortex-lattice inductance from the `volume' inductance,
and other skin-depth effects. To analyze the spectra, we consider a weakly
disordered lattice with a low pin density. Close fits are obtained to
over 2 decades in . Values of the pinning parameter
and shear modulus obtained show that collapses by
over 4 decades at , whereas remains finite.Comment: 11 pages, 8 figures, Phys. Rev. B, in pres
Light-cone-like spreading of correlations in a quantum many-body system
How fast can correlations spread in a quantum many-body system? Based on the
seminal work by Lieb and Robinson, it has recently been shown that several
interacting many-body systems exhibit an effective light cone that bounds the
propagation speed of correlations. The existence of such a "speed of light" has
profound implications for condensed matter physics and quantum information, but
has never been observed experimentally. Here we report on the time-resolved
detection of propagating correlations in an interacting quantum many-body
system. By quenching a one-dimensional quantum gas in an optical lattice, we
reveal how quasiparticle pairs transport correlations with a finite velocity
across the system, resulting in an effective light cone for the quantum
dynamics. Our results open important perspectives for understanding relaxation
of closed quantum systems far from equilibrium as well as for engineering
efficient quantum channels necessary for fast quantum computations.Comment: 7 pages, 5 figures, 2 table
Exact renormalization group flow equations for non-relativistic fermions: scaling towards the Fermi surface
We construct exact functional renormalization group (RG) flow equations for
non-relativistic fermions in arbitrary dimensions, taking into account not only
mode elimination but also the rescaling of the momenta, frequencies and the
fermionic fields. The complete RG flow of all relevant, marginal and irrelevant
couplings can be described by a system of coupled flow equations for the
irreducible n-point vertices. Introducing suitable dimensionless variables, we
obtain flow equations for generalized scaling functions which are continuous
functions of the flow parameter, even if we consider quantities which are
dominated by momenta close to the Fermi surface, such as the density-density
correlation function at long wavelengths. We also show how the problem of
constructing the renormalized Fermi surface can be reduced to the problem of
finding the RG fixed point of the irreducible two-point vertex at vanishing
momentum and frequency. We argue that only if the degrees of freedom are
properly rescaled it is possible to reach scale-invariant non-Fermi liquid
fixed points within a truncation of the exact RG flow equations.Comment: 20 Revtex pages, with 4 figures; final version to appear in Phys.
Rev. B; references and some explanations adde
Entanglement-enhanced probing of a delicate material system
Quantum metrology uses entanglement and other quantum effects to improve the
sensitivity of demanding measurements. Probing of delicate systems demands high
sensitivity from limited probe energy and has motivated the field's key
benchmark-the standard quantum limit. Here we report the first
entanglement-enhanced measurement of a delicate material system. We
non-destructively probe an atomic spin ensemble by means of near-resonant
Faraday rotation, a measurement that is limited by probe-induced scattering in
quantum-memory and spin-squeezing applications. We use narrowband,
atom-resonant NOON states to beat the standard quantum limit of sensitivity by
more than five standard deviations, both on a per-photon and per-damage basis.
This demonstrates quantum enhancement with fully realistic loss and noise,
including variable-loss effects. The experiment opens the way to ultra-gentle
probing of single atoms, single molecules, quantum gases and living cells.Comment: 7 pages, 8 figures; Nature Photonics, advance online publication, 16
December 201
Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration
Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4(-/-)) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4(-/-) mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy
The impact of two semiannual treatments with albendazole alone on lymphatic filariasis and soil-transmitted helminth infections: A community-based study in the Republic of Congo
Implementation of mass drug administration (MDA) with ivermectin plus albendazole (ALB) for lymphatic filariasis (LF) has been delayed in central Africa because of the risk of serious adverse events in subjects with high Loa loa microfilaremia. We conducted a community trial to assess the impact of semiannual MDA with ALB (400 mg) alone on LF and soil-transmitted helminth (STH) infections in the Republic of Congo. Evaluation at 12 months showed that ALB MDA had not significantly reduced Wuchereria bancrofti antigenemia or microfilaria (mf) rates in the community (from 17.3% to 16.6% and from 5.3% to 4.2%, respectively). However, the geometric mean mf count in mf-positive subjects was reduced from 202.2 to 80.9 mf/mL (60% reduction, P = 0.01). The effect of ALB was impressive in 38 subjects who were mf-positive at baseline and retested at 12 months: 37% had total mf clearance, and individual mf densities were reduced by 73.0%. MDA also dramatically reduced the hookworm infection rate in the community from 6.5% to 0.6% (91% reduction), with less impressive effects on Ascaris and Trichuris. These preliminary results suggest that semiannual community MDA with ALB is a promising strategy for controlling LF and STH in areas with coendemic loiasis
A uniform procedure for the purification of CDK7/CycH/MAT1, CDK8/CycC and CDK9/CycT1
We have established a uniform procedure for the expression and purification of the cyclin-dependent kinases CDK7/CycH/MAT1, CDK8/CycC and CDK9/CycT1. We attach a His(6)-tag to one of the subunits of each complex and then co-express it together with the other subunits in Spodoptera frugiperda insect cells. The CDK complexes are subsequently purified by Ni(2+)-NTA and Mono S chromatography. This approach generates large amounts of active recombinant kinases that are devoid of contaminating kinase activities. Importantly, the properties of these recombinant kinases are similar to their natural counterparts (Pinhero et al. 2004, Eur J Biochem 271:1004-14). Our protocol provides a novel systematic approach for the purification of these three (and possibly other) recombinant CDKs
The Functional DRD3 Ser9Gly Polymorphism (rs6280) Is Pleiotropic, Affecting Reward as Well as Movement
Abnormalities of motivation and behavior in the context of reward are a fundamental component of addiction and mood disorders. Here we test the effect of a functional missense mutation in the dopamine 3 receptor (DRD3) gene (ser9gly, rs6280) on reward-associated dopamine (DA) release in the striatum. Twenty-six healthy controls (HCs) and 10 unmedicated subjects with major depressive disorder (MDD) completed two positron emission tomography (PET) scans with [11C]raclopride using the bolus plus constant infusion method. On one occasion subjects completed a sensorimotor task (control condition) and on another occasion subjects completed a gambling task (reward condition). A linear regression analysis controlling for age, sex, diagnosis, and self-reported anhedonia indicated that during receipt of unpredictable monetary reward the glycine allele was associated with a greater reduction in D2/3 receptor binding (i.e., increased reward-related DA release) in the middle (anterior) caudate (p<0.01) and the ventral striatum (p<0.05). The possible functional effect of the ser9gly polymorphism on DA release is consistent with previous work demonstrating that the glycine allele yields D3 autoreceptors that have a higher affinity for DA and display more robust intracellular signaling. Preclinical evidence indicates that chronic stress and aversive stimulation induce activation of the DA system, raising the possibility that the glycine allele, by virtue of its facilitatory effect on striatal DA release, increases susceptibility to hyperdopaminergic responses that have previously been associated with stress, addiction, and psychosis
- …