729 research outputs found
A simple two-module problem to exemplify building-block assembly under crossover
Theoretically and empirically it is clear that a genetic algorithm with crossover will outperform a genetic algorithm without crossover in some fitness landscapes, and vice versa in other landscapes. Despite an extensive literature on the subject, and recent proofs of a principled distinction in the abilities of crossover and non-crossover algorithms for a particular theoretical landscape, building general intuitions about when and why crossover performs well when it does is a different matter. In particular, the proposal that crossover might enable the assembly of good building-blocks has been difficult to verify despite many attempts at idealized building-block landscapes. Here we show the first example of a two-module problem that shows a principled advantage for cross-over. This allows us to understand building-block assembly under crossover quite straightforwardly and build intuition about more general landscape classes favoring crossover or disfavoring it
Updated tests of scaling and universality for the spin-spin correlations in the 2D and 3D spin-S Ising models using high-temperature expansions
We have extended, from order 12 through order 25, the high-temperature series
expansions (in zero magnetic field) for the spin-spin correlations of the
spin-S Ising models on the square, simple-cubic and body-centered-cubic
lattices. On the basis of this large set of data, we confirm accurately the
validity of the scaling and universality hypotheses by resuming several tests
which involve the correlation function, its moments and the exponential or the
second-moment correlation-lengths.Comment: 21 pages, 8 figure
Recommended from our members
Enhancement of Heat Removal using Concave Liquid Metal Targets for High Power Accelerators
Selected Topics in Three- and Four-Nucleon Systems
Two different aspects of the description of three- and four-nucleon systems
are addressed. The use of bound state like wave functions to describe
scattering states in collisions at low energies and the effects of some
of the widely used three-nucleon force models in selected polarization
observables in the three- and four-nucleon systems are discussed.Comment: Presented at the 21st European Conference on Few-Body Problems in
Physics, Salamanca, Spain, 30 August - 3 September 201
Flow Computations on Imprecise Terrains
We study the computation of the flow of water on imprecise terrains. We
consider two approaches to modeling flow on a terrain: one where water flows
across the surface of a polyhedral terrain in the direction of steepest
descent, and one where water only flows along the edges of a predefined graph,
for example a grid or a triangulation. In both cases each vertex has an
imprecise elevation, given by an interval of possible values, while its
(x,y)-coordinates are fixed. For the first model, we show that the problem of
deciding whether one vertex may be contained in the watershed of another is
NP-hard. In contrast, for the second model we give a simple O(n log n) time
algorithm to compute the minimal and the maximal watershed of a vertex, where n
is the number of edges of the graph. On a grid model, we can compute the same
in O(n) time
Phase Transition in the ABC Model
Recent studies have shown that one-dimensional driven systems can exhibit
phase separation even if the dynamics is governed by local rules. The ABC
model, which comprises three particle species that diffuse asymmetrically
around a ring, shows anomalous coarsening into a phase separated steady state.
In the limiting case in which the dynamics is symmetric and the parameter
describing the asymmetry tends to one, no phase separation occurs and the
steady state of the system is disordered. In the present work we consider the
weak asymmetry regime where is the system size and
study how the disordered state is approached. In the case of equal densities,
we find that the system exhibits a second order phase transition at some
nonzero .
The value of and the optimal profiles can be
obtained by writing the exact large deviation functional. For nonequal
densities, we write down mean field equations and analyze some of their
predictions.Comment: 18 pages, 3 figure
Generalized empty-interval method applied to a class of one-dimensional stochastic models
In this work we study, on a finite and periodic lattice, a class of
one-dimensional (bimolecular and single-species) reaction-diffusion models
which cannot be mapped onto free-fermion models.
We extend the conventional empty-interval method, also called
{\it interparticle distribution function} (IPDF) method, by introducing a
string function, which is simply related to relevant physical quantities.
As an illustration, we specifically consider a model which cannot be solved
directly by the conventional IPDF method and which can be viewed as a
generalization of the {\it voter} model and/or as an {\it epidemic} model. We
also consider the {\it reversible} diffusion-coagulation model with input of
particles and determine other reaction-diffusion models which can be mapped
onto the latter via suitable {\it similarity transformations}.
Finally we study the problem of the propagation of a wave-front from an
inhomogeneous initial configuration and note that the mean-field scenario
predicted by Fisher's equation is not valid for the one-dimensional
(microscopic) models under consideration.Comment: 19 pages, no figure. To appear in Physical Review E (November 2001
What is the Nature of EUV Waves? First STEREO 3D Observations and Comparison with Theoretical Models
One of the major discoveries of the Extreme ultraviolet Imaging Telescope
(EIT) on SOHO were intensity enhancements propagating over a large fraction of
the solar surface. The physical origin(s) of the so-called `EIT' waves is still
strongly debated. They are considered to be either wave (primarily fast-mode
MHD waves) or non-wave (pseudo-wave) interpretations. The difficulty in
understanding the nature of EUV waves lies with the limitations of the EIT
observations which have been used almost exclusively for their study. Their
limitations are largely overcome by the SECCHI/EUVI observations on-board the
STEREO mission. The EUVI telescopes provide high cadence, simultaneous
multi-temperature coverage, and two well-separated viewpoints. We present here
the first detailed analysis of an EUV wave observed by the EUVI disk imagers on
December 07, 2007 when the STEREO spacecraft separation was .
Both a small flare and a CME were associated with the wave cadence, and single
temperature and viewpoint coverage. These limitations are largely overcome by
the SECCHI/EUVI observations on-board the STEREO mission. The EUVI telescopes
provide high cadence, simultaneous multi-temperature coverage, and two
well-separated viewpoints. Our findings give significant support for a
fast-mode interpretation of EUV waves and indicate that they are probably
triggered by the rapid expansion of the loops associated with the CME.Comment: Solar Physics, 2009, Special STEREO Issue, in pres
Quantum computing implementations with neutral particles
We review quantum information processing with cold neutral particles, that
is, atoms or polar molecules. First, we analyze the best suited degrees of
freedom of these particles for storing quantum information, and then we discuss
both single- and two-qubit gate implementations. We focus our discussion mainly
on collisional quantum gates, which are best suited for atom-chip-like devices,
as well as on gate proposals conceived for optical lattices. Additionally, we
analyze schemes both for cold atoms confined in optical cavities and hybrid
approaches to entanglement generation, and we show how optimal control theory
might be a powerful tool to enhance the speed up of the gate operations as well
as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on
Neutral Particles
Cosmic Microwave Background Anisotropies from Scaling Seeds: Global Defect Models
We investigate the global texture model of structure formation in cosmogonies
with non-zero cosmological constant for different values of the Hubble
parameter. We find that the absence of significant acoustic peaks and little
power on large scales are robust predictions of these models. However, from a
careful comparison with data we conclude that at present we cannot safely
reject the model on the grounds of present CMB data. Exclusion by means of
galaxy correlation data requires assumptions on biasing and statistics. New,
very stringent constraints come from peculiar velocities.
Investigating the large-N limit, we argue that our main conclusions apply to
all global O(N) models of structure formation.Comment: LaTeX file with RevTex, 27 pages, 23 eps figs., submitted to Phys.
Rev. D. A version with higher quality images can be found at
http://mykonos.unige.ch/~kunz/download/lam.tar.gz for the LaTeX archive and
at http://mykonos.unige.ch/~kunz/download/lam.ps.gz for the compiled
PostScript fil
- …