1,574 research outputs found

    Algebraic vortex liquid theory of a quantum antiferromagnet on the kagome lattice

    Get PDF
    There is growing evidence from both experiment and numerical studies that low half-odd integer quantum spins on a kagome lattice with predominant antiferromagnetic near neighbor interactions do not order magnetically or break lattice symmetries even at temperatures much lower than the exchange interaction strength. Moreover, there appear to be a plethora of low energy excitations, predominantly singlets but also spin carrying, which suggest that the putative underlying quantum spin liquid is a gapless ``critical spin liquid'' rather than a gapped spin liquid with topological order. Here, we develop an effective field theory approach for the spin-1/2 Heisenberg model with easy-plane anisotropy on the kagome lattice. By employing a vortex duality transformation, followed by a fermionization and flux-smearing, we obtain access to a gapless yet stable critical spin liquid phase, which is described by (2+1)-dimensional quantum electrodynamics (QED3_3) with an emergent SU(8)\mathrm{SU}(8) flavor symmetry. The specific heat, thermal conductivity, and dynamical structure factor are extracted from the effective field theory, and contrasted with other theoretical approaches to the kagome antiferromagnet.Comment: 14 pages, 8 figure

    Interlayer coherent composite Fermi liquid phase in quantum Hall bilayers

    Get PDF
    Composite fermions have played a seminal role in understanding the quantum Hall effect, particularly the formation of a compressible `composite Fermi liquid' (CFL) at filling factor nu = 1/2. Here we suggest that in multi-layer systems interlayer Coulomb repulsion can similarly generate `metallic' behavior of composite fermions between layers, even if the electrons remain insulating. Specifically, we propose that a quantum Hall bilayer with nu = 1/2 per layer at intermediate layer separation may host such an interlayer coherent CFL, driven by exciton condensation of composite fermions. This phase has a number of remarkable properties: the presence of `bonding' and `antibonding' composite Fermi seas, compressible behavior with respect to symmetric currents, and fractional quantum Hall behavior in the counterflow channel. Quantum oscillations associated with the Fermi seas give rise to a new series of incompressible states at fillings nu = p/[2(p \pm 1)] per layer (p an integer), which is a bilayer analogue of the Jain sequence.Comment: 4 pages, 3 figure

    Gapless layered three-dimensional fractional quantum Hall states

    Full text link
    Using the parton construction, we build a three-dimensional (3D) multilayer fractional quantum Hall state with average filling \nu = 1/3 per layer that is qualitatively distinct from a stacking of weakly coupled Laughlin states. The state supports gapped charge e/3 fermionic quasiparticles that can propagate both within and between the layers, in contrast to the quasiparticles in a multilayer Laughlin state which are confined within each layer. Moreover, the state has gapless neutral collective modes, a manifestation of an emergent "photon", which is minimally coupled to the fermionic quasiparticles. The surface sheath of the multilayer state resembles a chiral analog of the Halperin-Lee-Read state, which is protected against gap forming instabilities by the topological character of the bulk 3D phase. We propose that this state might be present in multilayer systems in the "intermediate tunneling regime", where the interlayer tunneling strength is on the same order as the Coulomb energy scale. We also find that the parton construction leads to a candidate state for a bilayer \nu = 1/3 system in the intermediate tunneling regime. The candidate state is distinct from both a bilayer of \nu=1/3 Laughlin states and the single layer \nu = 2/3 state, but is nonetheless a fully gapped fractional quantum Hall state with charge e/3 anyonic quasiparticles.Comment: 11 pages, 1 figur

    The Roton Fermi Liquid

    Full text link
    We introduce and analyze a novel metallic phase of two-dimensional (2d) electrons, the Roton Fermi Liquid (RFL), which, in contrast to the Landau Fermi liquid, supports both gapless fermionic and bosonic quasiparticle excitations. The RFL is accessed using a re-formulation of 2d electrons consisting of fermionic quasiparticles and hc/2ehc/2e vortices interacting with a mutual long-ranged statistical interaction. In the presence of a strong vortex-antivortex (i.e. roton) hopping term, the RFL phase emerges as an exotic yet eminently tractable new quantum ground state. The RFL phase exhibits a ``Bose surface'' of gapless roton excitations describing transverse current fluctuations, has off-diagonal quasi-long-ranged order (ODQLRO) at zero temperature (T=0), but is not superconducting, having zero superfluid density and no Meissner effect. The electrical resistance {\it vanishes} as T→0T \to 0 with a power of temperature (and frequency), R(T)∼TγR(T) \sim T^\gamma (with γ>1\gamma >1), independent of the impurity concentration. The RFL phase also has a full Fermi surface of quasiparticle excitations just as in a Landau Fermi liquid. Electrons can, however, scatter anomalously from rotonic "current fluctuations'' and "superconducting fluctuations'', leading to "hot" and "cold" spots. Fermionic quasiparticles dominate the Hall electrical transport. We also discuss instabilities of the RFL to a conventional Fermi liquid and a superconductor. Precisely {\it at} the instability into the Fermi liquid state, the exponent γ=1\gamma =1, so that R(T)∼TR(T) \sim T. Upon entering the superconducting state the anomalous quasiparticle scattering is strongly suppressed. We discuss how the RFL phenomenology might apply to the cuprates.Comment: 43 page

    Conductance fluctuations at the integer quantum Hall plateau transition

    Full text link
    We study numerically conductance fluctuations near the integer quantum Hall effect plateau transition. The system is presumed to be in a mesoscopic regime, with phase coherence length comparable to the system size. We focus on a two-terminal conductance G for square samples, considering both periodic and open boundary conditions transverse to the current. At the plateau transition, G is broadly distributed, with a distribution function close to uniform on the interval between zero and one in units of e^2/h. Our results are consistent with a recent experiment by Cobden and Kogan on a mesoscopic quantum Hall effect sample.Comment: minor changes, 5 pages LaTex, 7 postscript figures included using epsf; to be published Phys. Rev. B 55 (1997

    Universal point contact resistance between thin-film superconductors

    Get PDF
    A system comprising two superconducting thin films connected by a point contact is considered. The contact resistance is calculated as a function of temperature and film geometry, and is found to vanish rapidly with temperature, according to a universal, nearly activated form, becoming strictly zero only at zero temperature. At the lowest temperatures, the activation barrier is set primarily by the superfluid stiffness in the films, and displays only a weak (i.e., logarithmic) temperature dependence. The Josephson effect is thus destroyed, albeit only weakly, as a consequence of the power-law-correlated superconducting fluctuations present in the films below the Berezinskii-Kosterlitz-Thouless transition temperature. The behavior of the resistance is discussed, both in various limiting regimes and as it crosses over between these regimes. Details are presented of a minimal model of the films and the contact, and of the calculation of the resistance. A formulation in terms of quantum phase-slip events is employed, which is natural and effective in the limit of a good contact. However, it is also shown to be effective even when the contact is poor and is, indeed, indispensable, as the system always behaves as if it were in the good-contact limit at low enough temperature. A simple mechanical analogy is introduced to provide some heuristic understanding of the nearly-activated temperature dependence of the resistance. Prospects for experimental tests of the predicted behavior are discussed, and numerical estimates relevant to anticipated experimental settings are provided.Comment: 29 pages (single column format), 7 figure
    • …
    corecore