1,561 research outputs found
Anderson transition of the plasma oscillations of 1D disordered Wigner lattices
We report the existence of a localization-delocalization transition in the
classical plasma modes of a one dimensional Wigner Crystal with a white noise
potential environment at T=0. Finite size scaling analysis reveals a divergence
of the localization length at a critical eigenfrequency. Further scaling
analysis indicates power law behavior of the critical frequency in terms of the
relative interaction strength of the charges. A heuristic argument for this
scaling behavior is consistent with the numerical results. Additionally, we
explore a particular realization of random-bond disorder in a one dimensional
Wigner lattice in which all of the collective modes are observed to be
localized.Comment: 4 pages, 3 figures, Typo for the localization length corrected.
Should read 1 / \n
Intrinsic noise and discrete-time processes
A general formalism is developed to construct a Markov chain model that
converges to a one-dimensional map in the infinite population limit. Stochastic
fluctuations are therefore internal to the system and not externally specified.
For finite populations an approximate Gaussian scheme is devised to describe
the stochastic fluctuations in the non-chaotic regime. More generally, the
stochastic dynamics can be captured using a stochastic difference equation,
derived through an approximation to the Markov chain. The scheme is
demonstrated using the logistic map as a case study.Comment: Modified version accepted for publication in Phys. Rev. E Rapid
Communications. New figures adde
Atomic scale engines: Cars and wheels
We introduce a new approach to build microscopic engines on the atomic scale
that move translationally or rotationally and can perform useful functions such
as pulling of a cargo. Characteristic of these engines is the possibility to
determine dynamically the directionality of the motion. The approach is based
on the transformation of the fed energy to directed motion through a dynamical
competition between the intrinsic lengths of the moving object and the
supporting carrier.Comment: 4 pages, 3 figures (2 in color), Phys. Rev. Lett. (in print
Recommended from our members
Gray Garden Slug and Grass Seed Production: Populations in Relation to Postharvest Residue Management
Effects of confinement and surface enhancement on superconductivity
Within the Ginzburg-Landau approach a theoretical study is performed of the
effects of confinement on the transition to superconductivity for type-I and
type-II materials with surface enhancement. The superconducting order parameter
is characterized by a negative surface extrapolation length . This leads to
an increase of the critical field and to a surface critical
temperature in zero field, , which exceeds the bulk . When the
sample is {\em mesoscopic} of linear size the surface induces
superconductivity in the interior for .
In analogy with adsorbed fluids, superconductivity in thin films of type-I
materials is akin to {\em capillary condensation} and competes with the
interface delocalization or "wetting" transition. The finite-size scaling
properties of capillary condensation in superconductors are scrutinized in the
limit that the ratio of magnetic penetration depth to superconducting coherence
length, , goes to zero, using analytic
calculations. While standard finite-size scaling holds for the transition in
non-zero magnetic field , an anomalous critical-point shift is found for
H=0. The increase of for H=0 is calculated for mesoscopic films,
cylindrical wires, and spherical grains of type-I and type-II materials.
Surface curvature is shown to induce a significant increase of ,
characterized by a shift inversely proportional to the
radius .Comment: 37 pages, 5 figures, accepted for PR
The effective potential, critical point scaling and the renormalization group
The desirability of evaluating the effective potential in field theories near
a phase transition has been recognized in a number of different areas. We show
that recent Monte Carlo simulations for the probability distribution for the
order parameter in an equilibrium Ising system, when combined with low-order
renormalization group results for an ordinary system, can be used to
extract the effective potential. All scaling features are included in the
process.Comment: REVTEX file, 22 pages, three figures, submitted to Phys. Rev.
Molecular motor that never steps backwards
We investigate the dynamics of a classical particle in a one-dimensional
two-wave potential composed of two periodic potentials, that are
time-independent and of the same amplitude and periodicity. One of the periodic
potentials is externally driven and performs a translational motion with
respect to the other. It is shown that if one of the potentials is of the
ratchet type, translation of the potential in a given direction leads to motion
of the particle in the same direction, whereas translation in the opposite
direction leaves the particle localized at its original location. Moreover,
even if the translation is random, but still has a finite velocity, an
efficient directed transport of the particle occurs.Comment: 4 pages, 5 figures, Phys. Rev. Lett. (in print
- …