35,341 research outputs found
Lecture notes on sediment transportation and channel stability
These notes have been prepared for a series of lectures on
sediment transportation and channel stability given by the authors to a group of engineers and geologists of the U. S. Department of Agriculture assembled at Caltech on September 12-16,1960. The material herein is not intended to serve as a complete textbook, because it covers only subjects of the one-week sequence of lectures Due to limitation of space and time, coverage of many subjects is brief and others are omitted altogether. At the end of each chapter the reader will find a selected list of references for more detailed study
Surface terms on the Nishimori line of the Gaussian Edwards-Anderson model
For the Edwards-Anderson model we find an integral representation for some
surface terms on the Nishimori line. Among the results are expressions for the
surface pressure for free and periodic boundary conditions and the adjacency
pressure, i.e., the difference between the pressure of a box and the sum of the
pressures of adjacent sub-boxes in which the box can been decomposed. We show
that all those terms indeed behave proportionally to the surface size and prove
the existence in the thermodynamic limit of the adjacency pressure.Comment: Final version with minor corrections. To appear in Journal of
Statistical Physic
A summary of the forebody high-angle-of-attack aerodynamics research on the F-18 and the X-29A aircraft
High-angle-of-attack aerodynamic studies have been conducted on both the F18 High Alpha Research Vehicle (HARV) and the X-29A aircraft. Data obtained include on- and off-surface flow visualization and static pressure measurements on the forebody. Comparisons of similar results are made between the two aircraft where possible. The forebody shapes of the two aircraft are different and the X-29A forebody flow is affected by the addition of nose strakes and a flight test noseboom. The forebody flow field of the F-18 HARV is fairly symmetric at zero sideslip and has distinct, well-defined vortices. The X-29A forebody vortices are more diffuse and are sometimes asymmetric at zero sideslip. These asymmetries correlate with observed zero-sideslip aircraft yawing moments
In-flight flow visualization with pressure measurements at low speeds on the NASA F-18 high alpha research vehicle
In-flight results from surface and off-surface flow visualizations and from extensive pressure distributions document the vortical flow on the leading edge extensions (LEX) and forebody of the NASA F-18 high alpha research vehicle for low speeds and angles of attack up to 50 degs. Surface flow visualization data, obtained using the emitted fluid technique, were used to define separation lines and laminar separation bubbles. Off-surface flow visualization data, obtained by smoke injection, were used to document both the path of the vortex cores and the location of vortex core breakdown. The location of vortex core breakdown correlated well with the loss of suction pressure on the LEX and with the flow visualization results from ground facilities. Surface flow separation lines on the LEX and forebody corresponded well with the end of pressure recovery under the vortical flows. Correlation of the pressures with wind tunnel results show fair to good correlation
In-flight flow visualization characteristics of the NASA F-18 high alpha research vehicle at high angles of attack
Surface and off-surface flow visualization techniques were used to visualize the 3-D separated flows on the NASA F-18 high alpha research vehicle at high angles of attack. Results near the alpha = 25 to 26 deg and alpha = 45 to 49 deg are presented. Both the forebody and leading edge extension (LEX) vortex cores and breakdown locations were visualized using smoke. Forebody and LEX vortex separation lines on the surface were defined using an emitted fluid technique. A laminar separation bubble was also detected on the nose cone using the emitted fluid technique and was similar to that observed in the wind tunnel test, but not as extensive. Regions of attached, separated, and vortical flow were noted on the wing and the leading edge flap using tufts and flow cones, and compared well with limited wind tunnel results
Summary of in-flight flow visualization obtained from the NASA high alpha research vehicle
A summary of the surface and off-surface flow visualization results obtained in flight on the F-18 high alpha research vehicle (HARV) is presented, highlighting the extensive 3-D vortical flow on the aircraft at angles of attack up to 50 degs. The emitted fluid technique, as well as tufts and flow cones, were used to document the surface flow. A smoke generator system injected smoke into the vortex cores generated by the forebody and leading edge extensions (LEXs). Documentation was provided by onboard still and video, by air-to-air, and by postflight photography. The surface flow visualization techniques revealed laminar separation bubbles near the forebody apex, lines of separation on the forebody and LEX, and regions of attached and separated flow on the wings and fins. The off-surface flow visualization techniques showed the path of the vortex cores on the forebody and LEX as well as the LEX vortex core breakdown location. An interaction between the forebody and LEX vortices was noted. The flow over the surfaces of the vertical tail was categorized into regions of attached, unsteady, or separated flow using flow tufts
Random antiferromagnetic quantum spin chains: Exact results from scaling of rare regions
We study XY and dimerized XX spin-1/2 chains with random exchange couplings
by analytical and numerical methods and scaling considerations. We extend
previous investigations to dynamical properties, to surface quantities and
operator profiles, and give a detailed analysis of the Griffiths phase. We
present a phenomenological scaling theory of average quantities based on the
scaling properties of rare regions, in which the distribution of the couplings
follows a surviving random walk character. Using this theory we have obtained
the complete set of critical decay exponents of the random XY and XX models,
both in the volume and at the surface. The scaling results are confronted with
numerical calculations based on a mapping to free fermions, which then lead to
an exact correspondence with directed walks. The numerically calculated
critical operator profiles on large finite systems (L<=512) are found to follow
conformal predictions with the decay exponents of the phenomenological scaling
theory. Dynamical correlations in the critical state are in average
logarithmically slow and their distribution show multi-scaling character. In
the Griffiths phase, which is an extended part of the off-critical region
average autocorrelations have a power-law form with a non-universal decay
exponent, which is analytically calculated. We note on extensions of our work
to the random antiferromagnetic XXZ chain and to higher dimensions.Comment: 19 pages RevTeX, eps-figures include
Aging and scaling laws in -hydroquinone-clathrate
The dielectric permittivity of the orientational glass
methanol(x=0.73)--hydroquinone-clathrate has been studied as function of
temperature and waiting time using different temperature-time-protocols. We
study aging, rejuvenation and memory effects in the glassy phase and discuss
similarities and differences to aging in spin-glasses. We argue that the
diluted methanol-clathrate, although conceptually close to its magnetic
pendants, takes an intermediate character between a true spin-glass and a pure
random field system
A randomized controlled pilot trial of classroom-based mindfulness meditation compared to an active control condition in sixth-grade children
The current study is a pilot trial to examine the effects of a nonelective, classroom-based, teacher-implemented, mindfulness meditation intervention on standard clinical measures of mental health and affect in middle school children. A total of 101 healthy sixth-grade students (55 boys, 46 girls) were randomized to either an Asian history course with daily mindfulness meditation practice (intervention group) or an African history course with a matched experiential activity (active control group). Self-reported measures included the Youth Self Report (YSR), a modified Spielberger State-Trait Anxiety Inventory, and the Cognitive and Affective Mindfulness Measure –Revised. Both groups decreased significantly on clinical syndrome subscales and affect but did not differ in the extent of their improvements. Meditators were significantly less likely to develop suicidal ideation or thoughts of self-harm than controls. These results suggest that mindfulness training may yield both unique and non-specific benefits that are shared by other novel activities
Vectorial Loading of Processive Motor Proteins: Implementing a Landscape Picture
Individual processive molecular motors, of which conventional kinesin is the
most studied quantitatively, move along polar molecular tracks and, by exerting
a force on a tether, drag cellular cargoes, {\em in
vivo}, or spherical beads, {\em in vitro}, taking up to hundreds of
nanometer-scale steps. From observations of velocities and the dispersion of
displacements with time, under measured forces and controlled fuel supply
(typically ATP), one may hope to obtain insight into the molecular motions
undergone in the individual steps. In the simplest situation, the load force
may be regarded as a scalar resisting force, , acting
parallel to the track: however, experiments, originally by Gittes {\em et al.}
(1996), have imposed perpendicular (or vertical) loads, , while more
recently Block and coworkers (2002, 2003) and Carter and Cross (2005) have
studied {\em assisting} (or reverse) loads, , and also sideways (or
transverse) loads
- …