657 research outputs found
First-Digit Law in Nonextensive Statistics
Nonextensive statistics, characterized by a nonextensive parameter , is a
promising and practically useful generalization of the Boltzmann statistics to
describe power-law behaviors from physical and social observations. We here
explore the unevenness of the first digit distribution of nonextensive
statistics analytically and numerically. We find that the first-digit
distribution follows Benford's law and fluctuates slightly in a periodical
manner with respect to the logarithm of the temperature. The fluctuation
decreases when increases, and the result converges to Benford's law exactly
as approaches 2. The relevant regularities between nonextensive statistics
and Benford's law are also presented and discussed.Comment: 11 pages, 3 figures, published in Phys. Rev.
Divergent mathematical treatments in utility theory
In this paper I study how divergent mathematical treatments affect mathematical modelling, with a special focus on utility theory. In particular I examine recent work on the ranking of information states and the discounting of future utilities, in order to show how, by replacing the standard analytical treatment of the models involved with one based on the framework of Nonstandard Analysis, diametrically opposite results are obtained. In both cases, the choice between the standard and nonstandard treatment amounts to a selection of set-theoretical parameters that cannot be made on purely empirical grounds. The analysis of this phenomenon gives rise to a simple logical account of the relativity of impossibility theorems in economic theory, which concludes the paper
Testing the bounds on quantum probabilities
Bounds on quantum probabilities and expectation values are derived for
experimental setups associated with Bell-type inequalities. In analogy to the
classical bounds, the quantum limits are experimentally testable and therefore
serve as criteria for the validity of quantum mechanics.Comment: 9 pages, Revte
Statistical mechanics of voting
Decision procedures aggregating the preferences of multiple agents can
produce cycles and hence outcomes which have been described heuristically as
`chaotic'. We make this description precise by constructing an explicit
dynamical system from the agents' preferences and a voting rule. The dynamics
form a one dimensional statistical mechanics model; this suggests the use of
the topological entropy to quantify the complexity of the system. We formulate
natural political/social questions about the expected complexity of a voting
rule and degree of cohesion/diversity among agents in terms of random matrix
models---ensembles of statistical mechanics models---and compute quantitative
answers in some representative cases.Comment: 9 pages, plain TeX, 2 PostScript figures included with epsf.tex
(ignore the under/overfull \vbox error messages
Topological aggregation, the twin paradox and the No Show paradox
International audienceConsider the framework of topological aggregation introduced by Chichilnisky (1980). We prove that in this framework the Twin Paradox and the No Show Paradox cannot be avoided. Anonymity and unanimity are not needed to obtain these results
The Complexity of Computing Minimal Unidirectional Covering Sets
Given a binary dominance relation on a set of alternatives, a common thread
in the social sciences is to identify subsets of alternatives that satisfy
certain notions of stability. Examples can be found in areas as diverse as
voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08]
proved that it is NP-hard to decide whether an alternative is contained in some
inclusion-minimal upward or downward covering set. For both problems, we raise
this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and
provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other
natural problems regarding minimal or minimum-size covering sets are hard or
complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of
our results is that neither minimal upward nor minimal downward covering sets
(even when guaranteed to exist) can be computed in polynomial time unless P=NP.
This sharply contrasts with Brandt and Fischer's result that minimal
bidirectional covering sets (i.e., sets that are both minimal upward and
minimal downward covering sets) are polynomial-time computable.Comment: 27 pages, 7 figure
Advanced demand and a critical analysis of revenue management
Pre-print; author's draftThis paper presents a theoretical framework of advanced demand through six propositions. The framework introduces the concept of acquisition and valuation risks and suggests that advanced demand distribution is rooted in the trade off between them. Furthermore, since advanced buyers may not consume, firms may be able to re-sell capacity relinquished. The study then proposes how refunds could provide additional revenue to firms.
The study further suggests theoretical reasons why and when service firms are able to practice revenue management, suggesting that RM tools such as overbooking and demand forecasting may not be the only tools for higher revenue
- …