4 research outputs found
Rôle de la densité en CXCR4 à la surface des cellules lymphocytes TCD4+ dans l'émergence et la réplication des souches X4 du Virus de l'Immunodéficience Humaine de type 1
MONTPELLIER-BU Médecine UPM (341722108) / SudocMONTPELLIER-BU Médecine (341722104) / SudocSudocFranceF
Certain protein transducing agents convert translocated proteins into cell killers.
The majority of proteins are unable to translocate into the cell interior. Hence for peptide- and protein-based therapeutics a direct intracytoplasmic delivery with the aid of transducing agents is an attractive approach. We wanted to deliver to the cell interior a putatively cytotoxic protein VPg. Protein transduction was achieved in vitro with three different commercial products. However, in our hands, delivery of various control proteins without known deleterious effects, as well as of protein VPg, always induced cell death. Finally, we used a novel transducing peptide Wr-T, which was not toxic to cultured cells, even in a quite large range of concentrations. Most importantly, control protein delivered to cells in culture did not display any toxicity while VPg protein exerted a strong cytotoxic effect. These data show that results obtained with cell-penetrating agents should be interpreted with caution
Induction of Long-Term Protective Antiviral Endogenous Immune Response by Short Neutralizing Monoclonal Antibody Treatment
Long-term immune control of viral replication still remains a major challenge in retroviral diseases. Several monoclonal antibodies (MAbs) have already shown antiviral activities in vivo, including in the clinic but their effects on the immune system of treated individuals are essentially unknown. Using the lethal neurodegeneration induced in mice upon infection of neonates by the FrCas(E) retrovirus as a model, we report here that transient treatment by a neutralizing MAb shortly after infection can, after an immediate antiviral effect, favor the development of a strong protective host immune response containing viral propagation long after the MAb has disappeared. In vitro virus neutralization- and complement-mediated cell lysis assays, as well as in vivo viral challenges and serum transfer experiments, indicate a clear and essential contribution of the humoral response to antiviral protection. Our observation may have important therapeutic consequences as it suggests that short antibody-based therapies early after infection should be considered, at least in the case of maternally infected infants, as adjunctive treatment strategies against human immunodeficiency virus, not only for a direct effect on the viral load but also for favoring the emergence of an endogenous antiviral immune response
C-terminal Residues Regulate Localization and Function of the Antiapoptotic Protein Bfl-1*
Unlike other antiapoptotic members of the Bcl-2 family, Bfl-1 does not contain a well defined C-terminal transmembrane domain, and whether the C-terminal tail of Bfl-1 functions as a membrane anchor is not yet clearly established. The molecular modeling study of the full-length Bfl-1 performed within this work suggests that Bfl-1 may co-exist in two distinct conformational states: one in which its C-terminal helix α9 is inserted in the hydrophobic groove formed by the BH1–3 domains of Bfl-1 and one with its C terminus. Parallel analysis of the subcellular localization of Bfl-1 indicates that even if Bfl-1 may co-exist in two distinct conformational states, most of the endogenous protein is tightly associated with the mitochondria by its C terminus in both healthy and apoptotic peripheral blood lymphocytes as well as in malignant B cell lines. However, the helix α9 of Bfl-1, and therefore the binding of Bfl-1 to mitochondria, is not absolutely required for the antiapoptotic activity of Bfl-1. A particular feature of Bfl-1 is the amphipathic character of its C-terminal helix α9. Our data clearly indicate that this property of helix α9 is required for the anchorage of Bfl-1 to the mitochondria but also regulates the antiapoptotic function Bfl-1