14 research outputs found

    Kinetics of Binary Nucleation of Vapors in Size and Composition Space

    Get PDF
    We reformulate the kinetic description of binary nucleation in the gas phase using two natural independent variables: the total number of molecules g and the molar composition x of the cluster. The resulting kinetic equation can be viewed as a two-dimensional Fokker-Planck equation describing the simultaneous Brownian motion of the clusters in size and composition space. Explicit expressions for the Brownian diffusion coefficients in cluster size and composition space are obtained. For characterization of binary nucleation in gases three criteria are established. These criteria establish the relative importance of the rate processes in cluster size and composition space for different gas phase conditions and types of liquid mixtures. The equilibrium distribution function of the clusters is determined in terms of the variables g and x. We obtain an approximate analytical solution for the steady-state binary nucleation rate that has the correct limit in the transition to unary nucleation. To further illustrate our description, the nonequilibrium steady-state cluster concentrations are found by numerically solving the reformulated kinetic equation. For the reformulated transient problem, the relaxation or induction time for binary nucleation was calculated using Galerkin\u27s method. This relaxation time is affected by processes in both size and composition space, but the contributions from each process can be separated only approximately

    Kinetics of ion-induced nucleation in a vapor-gas mixture

    Get PDF
    A general solution for the steady-state ion-induced nucleation kinetics has been derived, considering the differences between ion-induced nucleation and homogeneous nucleation. This solution includes a new effect for nucleation kinetics, the interaction of charged clusters with vapor molecules. Analytical expressions for the ion-induced nucleation rate have been obtained for the limiting cases of high and low thermodynamic barriers. The physical explanation of the so-called sign effect is proposed based on multipole expansion of an electric field of the cluster ion. This theory gives good agreement with experiments and is used to elucidate experimentally observed phenomena

    Pharmacological sequestration of mitochondrial calcium uptake protects against dementia and β-amyloid neurotoxicity

    Get PDF
    All forms of dementia including Alzheimer's disease are currently incurable. Mitochondrial dysfunction and calcium alterations are shown to be involved in the mechanism of neurodegeneration in Alzheimer's disease. Previously we have described the ability of compound Tg-2112x to protect neurons via sequestration of mitochondrial calcium uptake and we suggest that it can also be protective against neurodegeneration and development of dementia. Using primary co-culture neurons and astrocytes we studied the effect of Tg-2112x and its derivative Tg-2113x on β-amyloid-induced changes in calcium signal, mitochondrial membrane potential, mitochondrial calcium, and cell death. We have found that both compounds had no effect on β-amyloid or acetylcholine-induced calcium changes in the cytosol although Tg2113x, but not Tg2112x reduced glutamate-induced calcium signal. Both compounds were able to reduce mitochondrial calcium uptake and protected cells against β-amyloid-induced mitochondrial depolarization and cell death. Behavioral effects of Tg-2113x on learning and memory in fear conditioning were also studied in 3 mouse models of neurodegeneration: aged (16-month-old) C57Bl/6j mice, scopolamine-induced amnesia (3-month-old mice), and 9-month-old 5xFAD mice. It was found that Tg-2113x prevented age-, scopolamine- and cerebral amyloidosis-induced decrease in fear conditioning. In addition, Tg-2113x restored fear extinction of aged mice. Thus, reduction of the mitochondrial calcium uptake protects neurons and astrocytes against β-amyloid-induced cell death and contributes to protection against dementia of different ethology. These compounds could be used as background for the developing of a novel generation of disease-modifying neuroprotective agents

    Derivatives of 9-phosphorylated acridine as butyrylcholinesterase inhibitors with antioxidant activity and the ability to inhibit β-amyloid self-aggregation: potential therapeutic agents for Alzheimer’s disease

    Get PDF
    We investigated the inhibitory activities of novel 9-phosphoryl-9,10-dihydroacridines and 9-phosphorylacridines against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CES). We also studied the abilities of the new compounds to interfere with the self-aggregation of β-amyloid (Aβ42) in the thioflavin test as well as their antioxidant activities in the ABTS and FRAP assays. We used molecular docking, molecular dynamics simulations, and quantum-chemical calculations to explain experimental results. All new compounds weakly inhibited AChE and off-target CES. Dihydroacridines with aryl substituents in the phosphoryl moiety inhibited BChE; the most active were the dibenzyloxy derivative 1d and its diphenethyl bioisostere 1e (IC50 = 2.90 ± 0.23 µM and 3.22 ± 0.25 µM, respectively). Only one acridine, 2d, an analog of dihydroacridine, 1d, was an effective BChE inhibitor (IC50 = 6.90 ± 0.55 μM), consistent with docking results. Dihydroacridines inhibited Aβ42 self-aggregation; 1d and 1e were the most active (58.9% ± 4.7% and 46.9% ± 4.2%, respectively). All dihydroacridines 1 demonstrated high ABTS•+-scavenging and iron-reducing activities comparable to Trolox, but acridines 2 were almost inactive. Observed features were well explained by quantum-chemical calculations. ADMET parameters calculated for all compounds predicted favorable intestinal absorption, good blood–brain barrier permeability, and low cardiac toxicity. Overall, the best results were obtained for two dihydroacridine derivatives 1d and 1e with dibenzyloxy and diphenethyl substituents in the phosphoryl moiety. These compounds displayed high inhibition of BChE activity and Aβ42 self-aggregation, high antioxidant activity, and favorable predicted ADMET profiles. Therefore, we consider 1d and 1e as lead compounds for further in-depth studies as potential anti-AD preparations

    Equalization of the Concentration of a Scalar Impurity in a Flow‐Type Chamber

    No full text
    Experimental and theoretical investigations of the time of equalization of the concentration of an impurity in a rectangular flow‐type chamber have been carried out. It has been shown that the process of equalization of the concentration with time is exponential in character. The characteristic equalization time has been computed using the theory of turbulent diffusion. Theoretical results describe experimental regularities with an accuracy of about 10%. The value of the coefficient of turbulent diffusion for different configurations of flows in the chamber has been obtained from a comparison of experimental and calculated results

    Spontaneous remyelination following dimethyl sulfoxide-induced demyelination is accompanied by behavioral and neurological alteration in mice

    No full text
    Introduction: Dimethyl sulfoxide (DMSO) is a commonly used solvent that can be applied in experimental studies for preparation of hydrophobic solutions as well as in capacity of a cryopreservative in transplantology. According to modern data acquired from in vitro experiments, DMSO is able to change the structure of myelin by decreasing synthesis of its main components and inhibiting oligodendrocyte genesis. Aim of the study: We studied influence of DMSO on anxiety and compulsive-like behavior, pain perception, motor coordination and myelin quantity in the corpus callosum of the C57BL/6 mice brain after prolonged oral administration of the solvent and 4 weeks after administration was stopped. Materials and Methods: All the experiments were conducted on male inbreed C57BL/6 mice. DMSO was added to drinking water to achieve 0.01% concentration, and the obtained solution was administered ad libitum for 6 weeks. After 6 weeks of administration of DMSO and 4 weeks after administration of DMSO was stopped, anxiety-like behavior in open field test, compulsive-like behavior in marble burying test, motor coordination in rotarod test, pain perception in tail-immersion test, as well as myelin quantity in the corpus callosum were evaluated. Results: It was established that DMSO consumed for 6 weeks was associated with decrease in the myelin quantity in thecorpus callosum and thermal hyperalgesia in tail-immersion test. During 4-week period after DMSO administration was stopped, attenuation of demyelination was observed, followed by an increase in thermal hyperalgesia in tail-immersion test, as well as vertical locomotion and exploratory activity in open field test. Conclusions: 6-week ad libitum administration of 0.01% DMSO solution was associated with demyelination in corpus callosum of С57BL/6 mice, followed by thermal hyperalgesia. Cessation of DMSO led to spontaneous remyelination with an increase in thermal hyperalgesia, vertical locomotion and exploratory activity of mice
    corecore