5 research outputs found

    Experimental study of a vertical column of grains submitted to a series of impulses

    Full text link
    We report physical phenomena occurring in a vertical Newton's cradle system. A dozen of metallic spheres are placed in a vertical tube. Therefore, the gravity induces a non-uniform pre-compression of the beads and a restoring force. An electromagnetic hammer hits the bottom bead at frequencies tuned between 1 and 14Hz. The motion of the beads are recorded using a high-speed camera. For low frequencies, the pulses travel through the pile and expel a few beads from the surface. Then, after a few bounces of these beads, the system relaxes to the chain of contacting grains. When the frequency is increased, the number of fluidized beads increases. In the fluidized part of the pile, adjacent beads are bouncing in opposition of phase. This phase locking of the top beads is observed even when the bottom beads experience chaotic motions. While the mechanical energy increases monotically with the bead vertical position, heterogeneous patterns in the kinetic energy distribution are found when the system becomes fluidized

    Vibration-induced compaction of granular suspensions

    No full text
    International audienceWe investigate the compaction dynamics of vibrated granular suspensions using both digital imaging technique and MRI measurements. Starting from initialy loose packings, our experimental data suggest the existence of two stages in the compaction dynamics: a fast stage at short times where a rising compaction front propagates through the granular suspension and a slow stage at large times where the packing compacts slowly and homogeneously. The compaction dynamics in each stage can be well fitted to usual stretched exponential laws with stretching exponents equal to 2 and 0.45, respectively. The transition time between these two stages, tau(c), depends on the fluid viscosity, vibration intensity and grain diameter. We show that tau(-1)(c) and the velocity of the front decrease roughly linearly with the lubrication Peclet number, Pe(lub) related to the competition between the lubrication stress induced by vibrations and the granular pressure
    corecore