113 research outputs found
Gram-Negative Bacterial Infection in Thigh Abscess Can Migrate to Distant Burn Depending on Burn Depth
Sepsis remains the major cause of death in patients with major burn injuries. In the present investigation we evaluated the interaction between burn injuries of varying severity and preexisting distant infection. We used Gram-negative bacteria (Pseudomonas aeruginosa and Proteus mirabilis) that were genetically engineered to be bioluminescent, which allowed for noninvasive, sequential optical imaging of the extent and severity of the infection. The bioluminescent bacteria migrated from subcutaneous abscesses in the leg to distant burn wounds on the back depending on the severity of the burn injury, and this migration led to increased mortality of the mice. Treatment with ciprofloxacin, injected either in the leg with the bacterial infection or into the burn eschar, prevented this colonization of the wound and decreased mortality. The present data suggest that burn wounds can readily become colonized by infections distant from the wound itself
Recommended from our members
Role of Protein Farnesylation in Burn-Induced Metabolic Derangements and Insulin Resistance in Mouse Skeletal Muscle
Objective: Metabolic derangements, including insulin resistance and hyperlactatemia, are a major complication of major trauma (e.g., burn injury) and affect the prognosis of burn patients. Protein farnesylation, a posttranslational lipid modification of cysteine residues, has been emerging as a potential component of inflammatory response in sepsis. However, farnesylation has not yet been studied in major trauma. To study a role of farnesylation in burn-induced metabolic aberration, we examined the effects of farnesyltransferase (FTase) inhibitor, FTI-277, on burn-induced insulin resistance and metabolic alterations in mouse skeletal muscle. Methods: A full thickness burn (30% total body surface area) was produced under anesthesia in male C57BL/6 mice at 8 weeks of age. After the mice were treated with FTI-277 (5 mg/kg/day, IP) or vehicle for 3 days, muscle insulin signaling, metabolic alterations and inflammatory gene expression were evaluated. Results: Burn increased FTase expression and farnesylated proteins in mouse muscle compared with sham-burn at 3 days after burn. Simultaneously, insulin-stimulated phosphorylation of insulin receptor (IR), insulin receptor substrate (IRS)-1, Akt and GSK-3β was decreased. Protein expression of PTP-1B (a negative regulator of IR-IRS-1 signaling), PTEN (a negative regulator of Akt-mediated signaling), protein degradation and lactate release by muscle, and plasma lactate levels were increased by burn. Burn-induced impaired insulin signaling and metabolic dysfunction were associated with increased inflammatory gene expression. These burn-induced alterations were reversed or ameliorated by FTI-277. Conclusions: Our data demonstrate that burn increased FTase expression and protein farnesylation along with insulin resistance, metabolic alterations and inflammatory response in mouse skeletal muscle, all of which were prevented by FTI-277 treatment. These results indicate that increased protein farnesylation plays a pivotal role in burn-induced metabolic dysfunction and inflammatory response. Our study identifies FTase as a novel potential molecular target to reverse or ameliorate metabolic derangements in burn patients
Recommended from our members
Potential of 18F-FDG PET toward personalized radiotherapy or chemoradiotherapy in lung cancer
Purpose We investigated the metabolic response of lung cancer to radiotherapy or chemoradiotherapy by 18F-FDG PET and its utility in guiding timely supplementary therapy. Methods: Glucose metabolic rate (MRglc) was measured in primary lung cancers during the 3 weeks before, and 10–12 days (S2), 3 months (S3), 6 months (S4), and 12 months (S5) after radiotherapy or chemoradiotherapy. The association between the lowest residual MRglc representing the maximum metabolic response (MRglc-MMR) and tumor control probability (TCP) at 12 months was modeled using logistic regression. Results: We accrued 106 patients, of whom 61 completed the serial 18F-FDG PET scans. The median values of MRglc at S2, S3 and S4 determined using a simplified kinetic method (SKM) were, respectively, 0.05, 0.06 and 0.07 μmol/min/g for tumors with local control and 0.12, 0.16 and 0.19 μmol/min/g for tumors with local failure, and the maximum standard uptake values (SUVmax) were 1.16, 1.33 and 1.45 for tumors with local control and 2.74, 2.74 and 4.07 for tumors with local failure (p < 0.0001). MRglc-MMR was realized at S2 (MRglc-S2) and the values corresponding to TCP 95 %, 90 % and 50 % were 0.036, 0.050 and 0.134 μmol/min/g using the SKM and 0.70, 0.91 and 1.95 using SUVmax, respectively. Probability cut-off values were generated for a given level of MRglc-S2 based on its predicted TCP, sensitivity and specificity, and MRglc ≤0.071 μmol/min/g and SUVmax ≤1.45 were determined as the optimum cut-off values for predicted TCP 80 %, sensitivity 100 % and specificity 63 %. Conclusion: The cut-off values (MRglc ≤0.071 μmol/min/g using the SKM and SUVmax ≤1.45) need to be tested for their utility in identifying patients with a high risk of residual cancer after standard dose radiotherapy or chemoradiotherapy and in guiding a timely supplementary dose of radiation or other means of salvage therapy. Electronic supplementary material The online version of this article (doi:10.1007/s00259-013-2348-4) contains supplementary material, which is available to authorized users
CNS Penetration of Intrathecal-Lumbar Idursulfase in the Monkey, Dog and Mouse: Implications for Neurological Outcomes of Lysosomal Storage Disorder
A major challenge for the treatment of many central nervous system (CNS) disorders is the lack of convenient and effective methods for delivering biological agents to the brain. Mucopolysaccharidosis II (Hunter syndrome) is a rare inherited lysosomal storage disorder resulting from a deficiency of iduronate-2-sulfatase (I2S). I2S is a large, highly glycosylated enzyme. Intravenous administration is not likely to be an effective therapy for disease-related neurological outcomes that require enzyme access to the brain cells, in particular neurons and oligodendrocytes. We demonstrate that intracerebroventricular and lumbar intrathecal administration of recombinant I2S in dogs and nonhuman primates resulted in widespread enzyme distribution in the brain parenchyma, including remarkable deposition in the lysosomes of both neurons and oligodendrocytes. Lumbar intrathecal administration also resulted in enzyme delivery to the spinal cord, whereas little enzyme was detected there after intraventricular administration. Mucopolysaccharidosis II model is available in mice. Lumbar administration of recombinant I2S to enzyme deficient animals reduced the storage of glycosaminoglycans in both superficial and deep brain tissues, with concurrent morphological improvements. The observed patterns of enzyme transport from cerebrospinal fluid to the CNS tissues and the resultant biological activity (a) warrant further investigation of intrathecal delivery of I2S via lumbar catheter as an experimental treatment for the neurological symptoms of Hunter syndrome and (b) may have broader implications for CNS treatment with biopharmaceuticals
- …