36,488 research outputs found

    Conceptual and socio-cognitive support for collaborative learning in videoconferencing environments

    Get PDF
    Studies have shown that videoconferences are an effective medium for facilitating communication between parties who are separated by distance. Furthermore, studies reveal that videoconferences are effective when used for distance learning, particularly when learners are engaged in complex collaborative learning tasks. However, as in face-to-face communication, learners benefit most when they receive additional support for such learning tasks. This article provides an overview of three empirical studies to illustrate more general insights regarding some of the more and less effective ways of supporting collaborative learning with videoconferencing. The focus is on conceptual support, such as structural visualization and socio-cognitive support, such as scripts. Based on the results of the three studies, conclusions can be drawn about the conceptual and socio-cognitive support measures that promote learning. Conclusions can also be reached about the need for employing both conceptual and socio-cognitive support to provide learners with the most benefit

    Frequency versus relaxation oscillations in a semiconductor laser with coherent filtered optical feedback

    Get PDF
    We investigate the dynamics of a semiconductor laser subject to coherent delayed filtered optical feedback. A systematic bifurcation analysis reveals that this system supports two fundamentally different types of oscillations, namely relaxation oscillations and external roundtrip oscillations. Both occur stably in large domains under variation of the feedback conditions, where the feedback phase is identified as a key quantity for controlling this dynamical complexity. We identify two separate parameter regions of stable roundtrip oscillations, which occur throughout in the form of pure frequency oscillations

    Illustrating field emission theory by using Lauritsen plots of transmission probability and barrier strength

    Full text link
    This technical note relates to the theory of cold field electron emission (CFE). It starts by suggesting that, to emphasize common properties in relation to CFE theory, the term 'Lauritsen plot' could be used to describe all graphical plots made with the reciprocal of barrier field (or the reciprocal of a quantity proportional to barrier field) on the horizontal axis. It then argues that Lauritsen plots related to barrier strength (G) and transmission probability (D) could play a useful role in discussion of CFE theory. Such plots would supplement conventional Fowler-Nordheim (FN) plots. All these plots would be regarded as particular types of Lauritsen plot. The Lauritsen plots of -G and lnD can be used to illustrate how basic aspects of FN tunnelling theory are influenced by the mathematical form of the tunnelling barrier. These, in turn, influence local emission current density and emission current. Illustrative applications used in this note relate to the well-known exact triangular and Schottky-Nordheim barriers, and to the Coulomb barrier (i.e., the electrostatic component of the electron potential energy barrier outside a model spherical emitter). For the Coulomb barrier, a good analytical series approximation has been found for the barrier-form correction factor; this can be used to predict the existence (and to some extent the properties) of related curvature in FN plots.Comment: Based on a poster presented at the 25th International Vacuum Nanoelectronics Conference, Jeju, S. Korea, July 2012. Version 3 incorporates small changes made at proof stag

    High-Resolution NIR Observations of the Circumstellar Disk System in the Bok Globule CB 26

    Full text link
    We report on results of near-infrared and optical observations of the mm disk embedded in the Bok globule CB 26 (Launhardt & Sargent 2001). The near-infrared images show a bipolar reflection nebula with a central extinction lane which coincides with the mm disk. Imaging polarimetry of this object yielded a polarization pattern which is typical for a young stellar object surrounded by a large circumstellar disk and an envelope, seen almost edge-on. The strong linear polarization in the bipolar lobes is caused by single scattering at dust grains and allowed to locate the illuminating source which coincides with the center of the mm disk. The spectral energy distribution of the YSO embedded in CB 26 resembles that of a ClassI source with a luminosity of 0.5 L_sun.Using the pre-main-sequence evolutionary tracks and the stellar mass inferred from the rotation curve of the disk, we derive an age of the system of <10^6 yr. H_alpha and [SII] narrow-band imaging as well as optical spectroscopy revealed an Herbig-Haro object 6.15 arcmin northwest of CB 26 YSO 1, perfectly aligned with the symmetry axis of the bipolar nebula. This Herbig-Haro object (HH 494) indicates ongoing accretion and outflow activity in CB 26 YSO 1. Its excitation characteristics indicate that the Herbig-Haro flow is propagating into a low-density environment. We suggest that CB 26 YSO 1 represents the transition stage between embedded protostellar accretion disks and more evolved protoplanetary disks around T Tauri stars in an undisturbed environment.Comment: 21 pages, 6 figures (reduced resolution), ApJ accepte

    Signatures of unconventional pairing in near-vortex electronic structure of LiFeAs

    Full text link
    A major question in Fe-based superconductors remains the structure of the pairing, in particular whether it is of unconventional nature. The electronic structure near vortices can serve as a platform for phase-sensitive measurements to answer this question. By solving Bogoliubov-de Gennes equations for LiFeAs, we calculate the energy-dependent local electronic structure near a vortex for different nodeless gap-structure possibilities. At low energies, the local density of states (LDOS) around a vortex is determined by the normal-state electronic structure. However, at energies closer to the gap value, the LDOS can distinguish an anisotropic from a conventional isotropic s-wave gap. We show within our self-consistent calculation that in addition, the local gap profile differs between a conventional and an unconventional pairing. We explain this through admixing of a secondary order parameter within Ginzburg-Landau theory. In-field scanning tunneling spectroscopy near vortices can therefore be used as a real-space probe of the gap structure

    Dry and wet interfaces: Influence of solvent particles on molecular recognition

    Full text link
    We present a coarse-grained lattice model to study the influence of water on the recognition process of two rigid proteins. The basic model is formulated in terms of the hydrophobic effect. We then investigate several modifications of our basic model showing that the selectivity of the recognition process can be enhanced by considering the explicit influence of single solvent particles. When the number of cavities at the interface of a protein-protein complex is fixed as an intrinsic geometric constraint, there typically exists a characteristic fraction that should be filled with water molecules such that the selectivity exhibits a maximum. In addition the optimum fraction depends on the hydrophobicity of the interface so that one has to distinguish between dry and wet interfaces.Comment: 11 pages, 7 figure

    HASH(0x563d43f42fa8)

    Get PDF
    HASH(0x563d44119d98)HASH(0x563d44067800
    • …
    corecore