484 research outputs found
Impact of Nano- and Micro-Sized Chromium(III) Particles on Cytotoxicity and Gene Expression Profiles Related to Genomic Stability in Human Keratinocytes and Alveolar Epithelial Cells
Exposure to Cr(VI) compounds has been consistently associated with genotoxicity and carcinogenicity, whereas Cr(III) is far less toxic, due to its poor cellular uptake. However, contradictory results have been published in relation to particulate CrO_3_2 particles were established using high-throughput RT-qPCR and then compared to water-soluble Cr(VI) and Cr(III) in A549 and HaCaT cells. Regarding the CrO_3$ particles, two out of three exerted only minor or no toxicity, and the gene expression profiles were comparable to Cr(III). However, one particle under investigation released considerable amounts of Cr(VI), and also resembled the toxicity profiles of Cr(VI); this was also evident in the altered gene expression related to DNA damage signaling, oxidative stress response, inflammation, and cell death pathways. Even though the highest toxicity was found in the case of the smallest particle, size did not appear to be the decisive parameter, but rather the purity of the Cr(III) particles with respect to Cr(VI) content
The adaptor protein PID1 regulates receptor-dependent endocytosis of postprandial triglyceride-rich lipoproteins.
ObjectiveInsulin resistance is associated with impaired receptor dependent hepatic uptake of triglyceride-rich lipoproteins (TRL), promoting hypertriglyceridemia and atherosclerosis. Next to low-density lipoprotein (LDL) receptor (LDLR) and syndecan-1, the LDLR-related protein 1 (LRP1) stimulated by insulin action contributes to the rapid clearance of TRL in the postprandial state. Here, we investigated the hypothesis that the adaptor protein phosphotyrosine interacting domain-containing protein 1 (PID1) regulates LRP1 function, thereby controlling hepatic endocytosis of postprandial lipoproteins.MethodsLocalization and interaction of PID1 and LRP1 in cultured hepatocytes was studied by confocal microscopy of fluorescent tagged proteins, by indirect immunohistochemistry of endogenous proteins, by GST-based pull down and by immunoprecipitation experiments. The in vivo relevance of PID1 was assessed using whole body as well as liver-specific Pid1-deficient mice on a wild type or Ldlr-deficient (Ldlr-/-) background. Intravital microscopy was used to study LRP1 translocation in the liver. Lipoprotein metabolism was investigated by lipoprotein profiling, gene and protein expression as well as organ-specific uptake of radiolabelled TRL.ResultsPID1 co-localized in perinuclear endosomes and was found associated with LRP1 under fasting conditions. We identified the distal NPxY motif of the intracellular C-terminal domain (ICD) of LRP1 as the site critical for the interaction with PID1. Insulin-mediated NPxY-phosphorylation caused the dissociation of PID1 from the ICD, causing LRP1 translocation to the plasma membrane. PID1 deletion resulted in higher LRP1 abundance at the cell surface, higher LDLR protein levels and, paradoxically, reduced total LRP1. The latter can be explained by higher receptor shedding, which we observed in cultured Pid1-deficient hepatocytes. Consistently, PID1 deficiency alone led to increased LDLR-dependent endocytosis of postprandial lipoproteins and lower plasma triglycerides. In contrast, hepatic PID1 deletion on an Ldlr-/- background reduced lipoprotein uptake into liver and caused plasma TRL accumulation.ConclusionsBy acting as an insulin-dependent retention adaptor, PID1 serves as a regulator of LRP1 function controlling the disposal of postprandial lipoproteins. PID1 inhibition provides a novel approach to lower plasma levels of pro-atherogenic TRL remnants by stimulating endocytic function of both LRP1 and LDLR in the liver
Effect of Long-Term Low-Dose Arsenic Exposure on DNA Methylation and Gene Expression in Human Liver Cells
Millions of people around the world are exposed to elevated levels of arsenic through food or drinking water. Epidemiological studies have linked chronic arsenic exposure to an increased risk of several cancers, cardiovascular disease, central nervous system neuropathies, and genotoxic as well as immunotoxic effects. In addition to the induction of oxidative stress and inhibition of DNA repair processes, epigenetic effects, including altered DNA methylation patterns resulting in aberrant gene expression, may contribute to carcinogenicity. However, the underlying mechanisms by which chronic micromolar concentrations of arsenite affect the methylation status of DNA are not fully understood. In this study, human HepG2 hepatocarcinoma cells were treated with 0.5–10 μM sodium arsenite for 24 h, 10, or 20 days. During these periods, the effects on global DNA methylation, cell cycle phase distribution, and gene expression were investigated. While no impact on DNA methylation was seen after short-term exposure, global hypomethylation was observed at both long-term exposure periods, with concomitant induction of the DNA methyltransferase genes DNMT1 and DNMT3B, while DNMT3A was slightly down-regulated. Pronounced time- and concentration-dependent effects were also seen in the case of genes involved in DNA damage response and repair, inflammation, oxidative stress response, and metal homeostasis. These results suggest that chronic low-dose arsenite exposure can lead to global hypomethylation. As an underlying mechanism, the consistent down-regulation of DNA methyltransferase genes could be excluded; alternatively, interactions at the protein level could play an important role
Tropospheric ozone production and chemical regime analysis during the COVID-19 lockdown over Europe
The COVID-19 (coronavirus disease 2019) European lockdowns have led to a significant reduction in the emissions of primary pollutants such as NO (nitric oxide) and NO (nitrogen dioxide). As most photochemical processes are related to nitrogen oxide (NO≡ NO + NO) chemistry, this event has presented an exceptional opportunity to investigate its effects on air quality and secondary pollutants, such as tropospheric ozone (O). In this study, we present the effects of the COVID-19 lockdown on atmospheric trace gas concentrations, net ozone production rates (NOPRs) and the dominant chemical regime throughout the troposphere based on three different research aircraft campaigns across Europe. These are the UTOPIHAN (Upper Tropospheric Ozone: Processes Involving HO and NO) campaigns in 2003 and 2004, the HOOVER (HO over Europe) campaigns in 2006 and 2007, and the BLUESKY campaign in 2020, the latter performed during the COVID-19 lockdown. We present in situ observations and simulation results from the ECHAM5 (fifth-generation European Centre Hamburg general circulation model, version 5.3.02)/MESSy2 (second-generation Modular Earth Submodel System, version 2.54.0) Atmospheric Chemistry (EMAC), model which allows for scenario calculations with business-as-usual emissions during the BLUESKY campaign, referred to as the “no-lockdown scenario”. We show that the COVID-19 lockdown reduced NO and NO mixing ratios in the upper troposphere by around 55 % compared to the no-lockdown scenario due to reduced air traffic. O production and loss terms reflected this reduction with a deceleration in O cycling due to reduced mixing ratios of NO, while NOPRs were largely unaffected. We also study the role of methyl peroxyradicals forming HCHO (CHO) to show that the COVID-19 lockdown shifted the chemistry in the upper-troposphere–tropopause region to a NO-limited regime during BLUESKY. In comparison, we find a volatile organic compound (VOC)-limited regime to be dominant during UTOPIHAN
STANDARDISING THE SAMPLE PREPARATION FOR ANALYSIS OF FIBRES AND PARTICLES BY STATIC IMAGE ANALYSIS
Static image analysis is known as a versatile method, which is in use for characterisation i.e. of fibres, nonwovens, textile recyclates etc. Due to incomplete standardization (esp. in the area of sample preparation) the usage is actually limited. Within the project StaPAFaB two research institutes are engaged to compile a reference manual listing typical classes of materials and optimised methods of sample preparation for each of them. This will be combined with recommendations for reasonable parameters in image acquisition / processing and possible limitations for each type of material. Aim is to enable reproducible and consistent analyses on an inter-laboratory level as well as to reduce the demand of time for the analyses. This article focuses on typical classes of textile materials and adapted methods to enable their quick and reliable sample preparation
Ground-state energy and entropy of the two-dimensional Edwards-Anderson spin-glass model with different bond distributions
We study the two-dimensional Edwards-Anderson spin-glass model using a
parallel tempering Monte Carlo algorithm. The ground-state energy and entropy
are calculated for different bond distributions. In particular, the entropy is
obtained by using a thermodynamic integration technique and an appropriate
reference state, which is determined with the method of high-temperature
expansion. This strategy provide accurate values of this quantity for
finite-size lattices. By extrapolating to the thermodynamic limit, the
ground-state energy and entropy of the different versions of the spin-glass
model are determined.Comment: 18 pages, 5 figure
Central role of nitric oxide in ozone production in the upper tropical troposphere over the Atlantic Ocean and western Africa
Mechanisms of tropospheric ozone (O3) formation are generally well understood. However, studies reporting on net ozone production rates (NOPRs) directly derived from in situ observations are challenging and are sparse in number. To analyze the role of nitric oxide (NO) in net ozone production in the upper tropical troposphere above the Atlantic Ocean and western Africa, we present in situ trace gas observations obtained during the CAFE-Africa (Chemistry of the Atmosphere: Field Experiment in Africa) campaign in August and September 2018. The vertical profile of in situ measured NO along the flight tracks reveals lowest NO mixing ratios of less than 20 pptv between 2 and 8 km altitude and highest mixing ratios of 0.15–0.2 ppbv above 12 km altitude. Spatial distribution of tropospheric NO above 12 km altitude shows that the sporadically enhanced local mixing ratios (>0.4 ppbv) occur over western Africa, which we attribute to episodic lightning events. Measured O3 shows little variability in mixing ratios at 60–70 ppbv, with slightly decreasing and increasing tendencies towards the boundary layer and stratosphere, respectively. Concurrent measurements of CO, CH, OH, HO and HO enable calculations of NOPRs along the flight tracks and reveal net ozone destruction at −0.6 to −0.2 ppbv h below 6 km altitude and balance of production and destruction around 7–8 km altitude. We report vertical average NOPRs of 0.2–0.4 ppbv h above 12 km altitude with NOPRs occasionally larger than 0.5 ppbv h over western Africa coincident with enhanced NO. We compare the observational results to simulated data retrieved from the general circulation model ECHAM/MESSy Atmospheric Chemistry (EMAC). Although the comparison of mean vertical profiles of NO and O indicates good agreement, local deviations between measured and modeled NO are substantial. The vertical tendencies in NOPRs calculated from simulated data largely reproduce those from in situ experimental data. However, the simulation results do not agree well with NOPRs over western Africa. Both measurements and simulations indicate that ozone formation in the upper tropical troposphere is NO limited
Insights into HOx and ROx chemistry in the boreal forest via measurement of peroxyacetic acid, peroxyacetic nitric anhydride (PAN) and hydrogen peroxide
Unlike many oxidised atmospheric trace gases, which have numerous production pathways, peroxyacetic acid (PAA) and PAN are formed almost exclusively in gasphase reactions involving the hydroperoxy radical (HO2), the acetyl peroxy radical (CH3C(O)O-2) and NO2 and are not believed to be directly emitted in significant amounts by vegetation. As the self-reaction of HO2 is the main photochemical route to hydrogen peroxide (H2O2), simultaneous observation of PAA, PAN and H2O2 can provide insight into the HO2 budget. We present an analysis of observations taken during a summertime campaign in a boreal forest that, in addition to natural conditions, was temporarily impacted by two biomass-burning plumes. The observations were analysed using an expression based on a steady-state assumption using relative PAA-to-PAN mixing ratios to derive HO2 concentrations. The steady-state approach generated HO2 concentrations that were generally in reasonable agreement with measurements but sometimes overestimated those observed by factors of 2 or more. We also used a chemically simple, constrained box model to analyse the formation and reaction of radicals that define the observed mixing ratios of PAA and H2O2. After nudging the simulation towards observations by adding extra, photochemical sources of HO2 and CH3C(O)O-2, the box model replicated the observations of PAA, H2O2, ROOH and OH throughout the campaign, including the biomass-burning-influenced episodes during which significantly higher levels of many oxidized trace gases were observed. A dominant fraction of CH3O2 radical generation was found to arise via reactions of the CH3C(O)O-2 radical. The model indicates that organic peroxy radicals were present at night in high concentrations that sometimes exceeded those predicted for daytime, and initially divergent measured and modelled HO2 concentrations and daily concentration profiles are reconciled when organic peroxy radicals are detected (as HO2) at an efficiency of 35 %. Organic peroxy radicals are found to play an important role in the recycling of OH radicals subsequent to their loss via reactions with volatile organic compounds.Peer reviewe
Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers
Metal compounds such as arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel are classified as carcinogens affecting human health through occupational and environmental exposure. However, the underlying mechanisms involved in tumor formation are not well clarified. Interference of metal homeostasis may result in oxidative stress which represents an imbalance between production of free radicals and the system’s ability to readily detoxify reactive intermediates. This event consequently causes DNA damage, lipid peroxidation, protein modification, and possibly symptomatic effects for various diseases including cancer. This review discusses predominant modes of action and numerous molecular markers. Attention is paid to metal-induced generation of free radicals, the phenomenon of oxidative stress, damage to DNA, lipid, and proteins, responsive signal transduction pathways with major roles in cell growth and development, and roles of antioxidant enzymatic and DNA repair systems. Interaction of non-enzymatic antioxidants (carotenoids, flavonoids, glutathione, selenium, vitamin C, vitamin E, and others) with cellular oxidative stress markers (catalase, glutathione peroxidase, and superoxide dismutase) as well as certain regulatory factors, including AP-1, NF-κB, Ref-1, and p53 is also reviewed. Dysregulation of protective pathways, including cellular antioxidant network against free radicals as well as DNA repair deficiency is related to oncogenic stimulation. These observations provide evidence that emerging oxidative stress-responsive regulatory factors and DNA repair proteins are putative predictive factors for tumor initiation and progression
- …