40 research outputs found

    Simulation of magnetic active polymers for versatile microfluidic devices

    Full text link
    We propose to use a compound of magnetic nanoparticles (20-100 nm) embedded in a flexible polymer (Polydimethylsiloxane PDMS) to filter circulating tumor cells (CTCs). The analysis of CTCs is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. The combination of experiments and simulations lead to a versatile microfluidic lab-on-chip device. Simulations are essential to understand the influence of the embedded nanoparticles in the elastic PDMS when applying a magnetic gradient field. It combines finite element calculations of the polymer, magnetic simulations of the embedded nanoparticles and the fluid dynamic calculations of blood plasma and blood cells. With the use of magnetic active polymers a wide range of tunable microfluidic structures can be created. The method can help to increase the yield of needed isolated CTCs

    Microstructure Role in Permanent Magnet Eddy Current Losses

    Full text link
    The impact of granular microstructure in permanent magnets on eddy current losses are investigated. A numerical homogenization procedure for electrical conductivity is defined. Then, an approximated simple analytical model for the homogenized conductivity able to capture the main features of the geometrical and material dependences is derived. Finally eddy current losses analytical calculations are given, and the two asymptotic expressions for losses in the stationary conduction limit and advanced skin effect limit are derived and discussed.Comment: 5 pages, 7 figure
    corecore