572 research outputs found
Domain decomposition methods in image denoising using Gaussian curvature
AbstractA domain decomposition method is used to solve a Gaussian curvature driven flow to denoise digital images. The algorithm is embarrassingly parallel and is ideal for parallel computers. We use the scheme of Lee–Keun [Noise removal based on nonlinear diffusion with Gauss curvature conductance, 2003, Preprint] in which the diffusion coefficient contains a term involving the Gaussian curvature. This minimizes the occurrence of patches and tips of cones are not flattened
Alternative approach to computing transport coefficients: application to conductivity and Hall coefficient of hydrogenated amorphous silicon
We introduce a theoretical framework for computing transport coefficients for
complex materials. As a first example, we resolve long-standing inconsistencies
between experiment and theory pertaining to the conductivity and Hall mobility
for amorphous silicon and show that the Hall sign anomaly is a consequence of
localized states. Next, we compute the AC conductivity of amorphous
polyanaline. The formalism is applicable to complex materials involving defects
and band-tail states originating from static topological disorder and extended
states. The method may be readily integrated with current \textit{ab initio}
methods.Comment: 4 pages, 2 figures, submitted to Phys. Rev. Let
Optical properties of small polarons from dynamical mean-field theory
The optical properties of polarons are studied in the framework of the
Holstein model by applying the dynamical mean-field theory. This approach
allows to enlighten important quantitative and qualitative deviations from the
limiting treatments of small polaron theory, that should be considered when
interpreting experimental data. In the antiadiabatic regime, accounting on the
same footing for a finite phonon frequency and a finite electron bandwidth
allows to address the evolution of the optical absorption away from the
well-understood molecular limit. It is shown that the width of the multiphonon
peaks in the optical spectra depends on the temperature and on the frequency in
a way that contradicts the commonly accepted results, most notably in the
strong coupling case. In the adiabatic regime, on the other hand, the present
method allows to identify a wide range of parameters of experimental interest,
where the electron bandwidth is comparable or larger than the broadening of the
Franck-Condon line, leading to a strong modification of both the position and
the shape of the polaronic absorption. An analytical expression is derived in
the limit of vanishing broadening, which improves over the existing formulas
and whose validity extends to any finite-dimensional lattice. In the same
adiabatic regime, at intermediate values of the interaction strength, the
optical absorption exhibits a characteristic reentrant behavior, with the
emergence of sharp features upon increasing the temperature -- polaron
interband transitions -- which are peculiar of the polaron crossover, and for
which analytical expressions are provided.Comment: 16 pages, 6 figure
A Variational Approach to Nonlocal Exciton-Phonon Coupling
In this paper we apply variational energy band theory to a form of the
Holstein Hamiltonian in which the influence of lattice vibrations (optical
phonons) on both local site energies (local coupling) and transfers of
electronic excitations between neighboring sites (nonlocal coupling) is taken
into account. A flexible spanning set of orthonormal eigenfunctions of the
joint exciton-phonon crystal momentum is used to arrive at a variational
estimate (bound) of the ground state energy for every value of the joint
crystal momentum, yielding a variational estimate of the lowest polaron energy
band across the entire Brillouin zone, as well as the complete set of polaron
Bloch functions associated with this band. The variation is implemented
numerically, avoiding restrictive assumptions that have limited the scope of
previous assaults on the same and similar problems. Polaron energy bands and
the structure of the associated Bloch states are studied at general points in
the three-dimensional parameter space of the model Hamiltonian (electronic
tunneling, local coupling, nonlocal coupling), though our principal emphasis
lay in under-studied area of nonlocal coupling and its interplay with
electronic tunneling; a phase diagram summarizing the latter is presented. The
common notion of a "self-trapping transition" is addressed and generalized.Comment: 33 pages, 11 figure
Optical absorption and activated transport in polaronic systems
We present exact results for the optical response in the one-dimensional
Holstein model. In particular, by means of a refined kernel polynomial method,
we calculate the ac and dc electrical conductivities at finite temperatures for
a wide parameter range of electron phonon interaction. We analyze the
deviations from the results of standard small polaron theory in the
intermediate coupling regime and discuss non-adiabaticity effects in detail.Comment: 7 pages, 8 figure
Comment on `Dynamical properties of small polarons'
We show that the conclusion on the breakdown of the standard small polaron
theory made recently by E.V. deMello and J. Ranninger (Phys. Rev. B 55, 14872
(1997)) is a result of an incorrect interpretation of the electronic and
vibronic energy levels of the two-site Holstein model. The small polaron
theory, when properly applied, agrees well with the numerical results of these
authors. Also we show that their attempt to connect the properties of the
calculated correlation functions with the features of the intersite electron
hopping is unsuccessful.Comment: To appear in Phys. Rev.
Electric Field Effect in Atomically Thin Carbon Films
We report a naturally-occurring two-dimensional material (graphene that can
be viewed as a gigantic flat fullerene molecule, describe its electronic
properties and demonstrate all-metallic field-effect transistor, which uniquely
exhibits ballistic transport at submicron distances even at room temperature
Momentum average approximation for models with boson-modulated hopping: Role of closed loops in the dynamical generation of a finite quasiparticle mass
We generalize the momentum average approximation to study the properties of
single polarons in models with boson affected hopping, where the fermion-boson
scattering depends explicitly on both the fermion's and the boson's momentum.
As a specific example, we investigate the Edwards fermion-boson model in both
one and two dimensions. In one dimension, this allows us to compare our results
with exact diagonalization results, to validate the accuracy of our
approximation. The generalization to two-dimensional lattices allows us to
calculate the polaron's quasiparticle weight and dispersion throughout the
Brillouin zone and to demonstrate the importance of Trugman loops in generating
a finite effective mass even when the free fermion has an infinite mass.Comment: 15 pages, 14 figure
Disorder-driven superconductor-normal metal phase transition in quasi-one-dimensional organic conductors
Effects of non-magnetic disorder on the critical temperature T_c and on
diamagnetism of quasi-one-dimensional superconductors are reported. The energy
of Josephson-coupling between wires is considered to be random, which is
typical for dirty organic superconductors. We show that this randomness
destroys phase coherence between wires and that T_c vanishes discontinuously at
a critical disorder-strength. The parallel and transverse components of the
penetration-depth are evaluated. They diverge at different critical
temperatures T_c^{(1)} and T_c, which correspond to pair-breaking and
phase-coherence breaking respectively. The interplay between disorder and
quantum phase fluctuations is shown to result in quantum critical behavior at
T=0, which manifests itself as a superconducting-normal metal phase transition
of first-order at a critical disorder strength.Comment: 12 pages, 3 figure
Two Dimensional Electron and Hole Gases at the Surface of Graphite
We report high-quality two-dimensional (2D) electron and hole gases induced
at the surface of graphite by the electric field effect. The 2D carriers reside
within a few near-surface atomic layers and exhibit mobilities up to 15,000 and
60,000 cm2/Vs at room and liquid-helium temperatures, respectively. The
mobilities imply ballistic transport at micron scale. Pronounced Shubnikov-de
Haas oscillations reveal the existence of two types of carries in both 2D
electron and hole gases.Comment: related to cond-mat/0410631 where preliminary data for this
experimental system were reporte
- …