2 research outputs found

    Dosimetric Comparison of Four Different Techniques for Supraclavicular Irradiation in 3D-conformal Radiotherapy of Breast Cancer

    Get PDF
    This study aimed to compare and evaluated the dosimetric characteristics of esophagus, spinal cord, carotid artery, lungs, and brachial plexus in patients with breast cancer undergoing four various techniques of supraclavicular irradiation. By keeping unchanged the breast tangential radiotherapy fields, four different treatment field arrangements were created to irradiate the supraclavicular region as follows: (1) four field (4F; 1 anterior-posterior and 1 posterior-anterior), (2) six field (6F; 2 anterior-posterior and 2 posterior-anterior), (3) five field-1 (5F-1; 2 anterior-posterior and 1 posterior-anterior), and (4) five field-2 (5F-2; 1 anterior-posterior and 2 posterior-anterior). Then, the dosimetric parameters for the above-mentioned organs were evaluated. The mean dose (Dmean) of the esophagus had significant difference between 6F and 5F-2 techniques. For the spinal cord, the Dmean dosimetric parameter demonstrated significant difference between the 4F and 6F techniques, and between the 4F and 5F-1 techniques, with lower values for the 4F technique. There was no significant difference between the different irradiation techniques in all the dosimetric parameters for the carotid artery. The Dmean of the left lung significantly differed between the 4F and 5F-2 techniques, with lower values for the 5F-2 technique. Furthermore, the V20Gy dosimetric parameter had significant difference between the 4F and 6F, and also 4F and 5F-2, techniques with lower values for 5F-2. The maximum dose (Dmax) of the brachial plexus showed significant difference between the two techniques of 5F. The V45Gy dosimetric parameter of the brachial plexus revealed significant difference between the 4F and 6F techniques, and also between the 4F and 5F-1 techniques, with lower values for 5F-1. In general, these techniques had similar dosimetric results, with little differences. The dosimetric parameters for the esophagus and lung showed better results with the 5F-2 technique in comparison with other techniques. Dosimetric results for the brachial plexus and spinal cord improved with the 5F-1 and 4F techniques, respectively, against other techniques. Dose distribution for the carotid artery did not differ in the four irradiation techniques

    Evaluation of dose rate and photon energy dependence of gafchromic EBT3 film irradiating with 6 MV and Co-60 photon beams

    No full text
    Gafchromic films are utilized for two-dimensional dose distribution measurements, especially in radiotherapy. In this study, we investigated a close connection between energy and dose rate of Gafchromic EBT3 films irradiating with 6 MV and Co-60 photon beams over a broad dose range. EBT3 films were exposed to 6 MV and Co-60 photon beams using 4 and 2 Gy/min dose rates over a 10-400 cGy dose range. The films were scanned in red, green, and blue channels to obtain the optical density (OD)-dose curves. The OD-dose curves resulted from three-color scans for different photon energies and dose rates were compared by statistical independent t-test. For the radiations of Co-60 and 6 MV photon beams, the highest correlation was obtained between the 2 and 4 Gy/min dose rates with red and green channels, respectively. Moreover, the red channel had a greater OD response per dose value, following the green and blue channels. There was no significant difference between different photon energies' (Co-60 and 6 MV) and dose rates' (2 and 4 Gy/min) dependence on OD-dose response of EBT3 films over a broad domain of radiation dose, except for different photon energies in the blue channel. Our results revealed that the OD-dose response of EBT3 films is independent on photon energies (Co-60 and 6 MV) and dose rate (2 and 4 Gy/min) in the evaluated dose range (10-400 cGy). Therefore, the EBT3 films are suitable, consistent, and reliable instruments for dose measurements in radiotherapy. © 2019 Journal of Medical Signals & Sensors
    corecore