5 research outputs found

    Echocardiographic evaluation of mitral geometry in functional mitral regurgitation

    Get PDF
    <p>Abstract</p> <p>Objectives</p> <p>We sought to evaluate the geometric changes of the mitral leaflets, local and global LV remodeling in patients with left ventricular dysfunction and varying degrees of Functional mitral regurgitation (FMR).</p> <p>Background</p> <p>Functional mitral regurgitation (FMR) occurs as a consequence of systolic left ventricular (LV) dysfunction caused by ischemic or nonischemic cardiomyopathy. Mitral valve repair in ischemic MR is one of the most controversial topic in surgery and proper repairing requires an understanding of its mechanisms, as the exact mechanism of FMR are not well defined.</p> <p>Methods</p> <p>136 consecutive patients mean age of 55 with systolic LV dysfunction and FMR underwent complete echocardiography and after assessing MR severity, LV volumes, Ejection Fraction, LV sphericity index, C-Septal distance, Mitral valve annulus, Interpapillary distance, Tenting distance and Tenting area were obtained.</p> <p>Results</p> <p>There was significant association between MR severity and echocardiogarphic indices (all p values < 0.001). Severe MR occurred more frequently in dilated cardiomyopathy (DCM) patients compared to ischemic patients, (p < 0.001). Based on the model, only Mitral valve tenting distance (TnD) (OR = 22.11, CI 95%: 14.18 – 36.86, p < 0.001) and Interpapillary muscle distance (IPMD), (OR = 6.53, CI 95%: 2.10 – 10.23, p = 0.001) had significant associations with MR severity.</p> <p>Mitral annular dimensions and area, C-septal distance and sphericity index, although greater in patients with severe regurgitation, did not significantly contribute to FMR severity.</p> <p>Conclusion</p> <p>Degree of LV enlargement and dysfunction were not primary determinants of FMR severity, therefore local LV remodeling and mitral valve apparatus deformation are the strongest predictors of functional MR severity.</p

    Global longitudinal strain for detection of cardiac iron overload in patients with thalassemia: a meta-analysis of observational studies with individual-level participant data

    No full text
    Background: Although cardiac magnetic resonance (CMR) is the most reliable tool for assessment of CIO in patients with thalassemia, it is not always readily available. Recent studies have explored the potential of GLS as an alternative for diagnosis of CIO. We aimed to investigate the efficacy of global longitudinal strain (GLS) for detection of cardiac iron level (CIO). Methods: We searched SCOPUS, MEDLINE, and Embase to identify the studies which used GLS for assessment of CIO. We searched for individual participant data (IPD) in eligible studies to perform ROC curve analysis. CMR with a T2* cut-off value of 20 ms was considered as the gold standard. A meta-analysis was performed and the risk of bias was assessed using the JBI Checklist. Results: A total of 14 studies with 789 thalassemia patients (310 and 430 with and without CIO respectively and 49 with undetermined condition) were considered eligible for meta-analysis. IPDs of 405 participants were available. GLS was significantly lower in patients with CIO (-17.5 ± 2.7%) compared to those without CIO (-19.9 ± 2.3%; WMD = 1.6%, 95% CI = [0.76-2.4], p = 0.001, I2 = 77.1%) and to normal population (-20.61 ± 2.26%; WMD = 2.2%, 95% CI = [0.91-3.5], p = 0.001, I2 = 83.9%). A GLS < -19.5% could predict CIO with 92.8% sensitivity and 34.63% specificity (AUC = 0.659, 95% CI = [0.6-0.72], p-value < 0.0001). A GLS value < -6% has 100% positive predictive and ≥ -24.5% has 100% negative predictive values for detection of CIO. Conclusions: According to our study, GLS is a strong predictor of CIO and when CMR is not available, it may be a useful screening method for identification of CIO in thalassemia patients
    corecore