7 research outputs found
Remediation of mangrove sediments of estuary Wouri: evaluation of potential of microbiota
L’importance des écosystèmes de mangroves n’est plus à démontrer dans l’équilibre naturel des côtes des régions tropicales. Elles constituent un écosystème particulier et jouent un rôle important dans la production de la biomasse. Mais l’exploitation excessive du bois des palétuviers, les pollutions diverses suite à l’exploitation pétrolière et gazière, sont autant de facteurs qui contribuent à la dégradation des forêts de mangroves. Ainsi, entre 1980 et 2000, environ 35% de la superficie mondiale des mangroves a disparu. La pollution a entraîné une dégradation considérable des mangroves. Une quantité grandissante de déchets résultant des activités urbaines, industrielles et agricoles et de l’exploitation en mer du pétrole et du gaz est rejetée sans aucun traitement dans la mer et se retrouve au niveau des mangroves. Les déversements accidentels d’hydrocarbures en mer entraînent une grave pollution des mangroves et la pollution marine provenant des navires est une menace qui va sans doute s’accroître avec le développement de l’exploitation pétrolière. L’objectif de cette thèse était de mettre au point une méthode de dépollution par voie biologique des sédiments de mangroves pollués par les hydrocarbures. Il s’agissait plus précisément d’évaluer les capacités intrinsèques de dégradation de la microflore spécifique endogène, de comparer le potentiel de dégradation de cette microflore avec d’autres souches pures connues pour leur capacité à dégrader les hydrocarbures et enfin d’évaluer les différentes techniques de biodégradation adaptées pour l’élimination des hydrocarbures dans les sédiments de mangroves. Des procédés biologiques adaptés ont été mis en œuvre au cours de ce travail pour restaurer les écosystèmes de mangroves. Différentes techniques de traitements biologiques impliquant la microflore spécifique endogène ont été mises en œuvre. L’évaluation du potentiel de dégradation de cette microflore a été réalisée par rapport à trois souches pures exogènes. Les résultats obtenus ont montré que le potentiel de dégradation de la microflore spécifique est comparable à celui de Rhodococcus erythropolis lorsqu’on augmente sa concentration dans les sédiments (107 CFU.g-1 de matière sèche). La croissance de cette microflore est accélérée avec la présence des nutriments tels l’azote et le phosphore. Ce qui relève davantage le taux de dégradation des hydrocarbures. Le taux de dégradation obtenu en combinant les traitements par bioaugmentation de la microflore spécifique endogène et biostimulation (86%) nous ont amené à proposer cette méthode pour dépolluer les sédiments de mangroves. L’utilisation de la microflore spécifique endogène évite de travailler avec des souches exogènes qui nous exposent aux problèmes écologiques et éthiques liés à leur utilisation
Biodegradation of Polycyclic Aromatic Hydrocarbons in Mangrove Sediments Under Different Strategies: Natural Attenuation, Biostimulation, and Bioaugmentation with Rhodococcus erythropolis T902.1
Polycyclic aromatic hydrocarbons (PAHs)
are pollutants that occur in mangrove sediments. Their
removal by bacteria often depends on specific characteristics
as the number of benzene rings they possess and
their solubility. Their removal also depends on environmental
factors, such as pH, temperature, oxygen, and the
ability of the endogenous or exogenous microflora to
metabolize hydrocarbons.With the aim of treating mangrove
sediments polluted by hydrocarbons in a biological
way, a biodegradation experiment was conducted
using mangrove sediments artificially contaminated
with a mixture of four PAHs. The study used
Rhodococcus erythropolis as an exogenous bacterial
strain in order to assess the biodegradation of the PAH
mixture by natural attenuation, biostimulation, bioaugmentation,
and a combination of biostimulation and
bioaugmentation. The results showed that the last three
treatments were more efficient than natural attenuation.
The biostimulation/bioaugmentation combination
proved to be the most effective PAH degradation
treatment
Characterization and Evaluation of the Potential of a Diesel-Degrading Bacterial Consortium Isolated from Fresh Mangrove Sediment
Hydrocarbons are ubiquitous and persistent
organic pollutants in the environment. In wetlands and
marine environments, particularly in mangrove ecosystems,
their increase and significant accumulation result
from human activities such as oil and gas exploration
and exploitation operations. Remediation of these ecosystems
requires the development of adequate and effective
strategies. Natural attenuation, biostimulation,
and bioaugmentation are all biological soil treatment
techniques that can be adapted to mangroves. Our experiments
were performed on samples of fresh mangrove
sediments from the Cameroon estuary and mainly
from the Wouri River in Cameroon. This study aims to
assess the degradation potential of a bacterial consortium
isolated from mangrove sediment. The principle of
our bioremediation experiments is based on a series of
tests designed to evaluate the potential of an active
indigenous microflora and three exogenous pure strains,
to degrade diesel with/without adding nutrients. The
experiments were conducted in laboratory flasks and a
greenhouse in microcosms. In one case, as in the other,
the endogenous microflora showed that it was able to
degrade diesel. Under stress of the pollutant, the endogenous
microflora fits well enough in the middle to
enable metabolism of the pollutant. However, the
Rhodococcus strain was more effective over time. The
degradation rate was 77 and 90%in the vials containing
the sterile sediments and non-sterile sediments, respectively.
The results are comparable with those obtained in
the microcosms in a greenhouse where only the endogenous
microflora were used. The results of this study
show that mangrove sediment contains an active microflora
that can metabolize diesel. Indigenous and active
microflora show an interesting potential for diesel
degradation
The Effect of Nutrients on the Degradation of Hydrocarbons in Mangrove Ecosystems by Microorganisms
peer reviewedMangrove ecosystems are areas prone to various types of pollution, especially hydrocarbons.
These hydrocarbons mostly stem from human activities such as spills coming from offshore oil operations,
runoff from surrounding urban areas or atmospheric deposition. This pollution causes the decline of mangroves,
which results in an imbalance in the functioning of this particular ecosystem with damages to the microbiota.
Biodegradation allows to restore these ecosystems. This biodegradation can only be effective in specific
environmental conditions. The presence of nutrients, which stimulate bacterial growth and promote
biodegradation, is a key parameter to be considered. During this experiment, we achieved biodegradation tests
to assess the effect of nitrogen and phosphorus on the process. The results showed that the biodegradation
rates were strongly bound to the presence of nutrients. The degradation rates depended on the medium. The
treatment that reached the best rate of degradation of diesel after 10 days was the one using 20% of a nutrient
solution (MSM) containing nitrogen and phosphorus. This treatment led to a maximal degradation of 84.7%
± 4.7% obtained in the flasks containing 20% of a nutrient solution (MSM) containing nitrogen and phosphorus
Overview of current knowledge management of pollution by oil mangroves
peer reviewedOverview of current knowledge on management of hydrocarbon pollution in mangroves. Mangrove forests are vital
in terms of biomass production and maintenance of the natural balance in coastal areas in the tropics. However, mangroves
are subject to pollution from human activities. Oil pollution is one of the causes leading to the decline of mangroves, which
represent only 1% of the area of all the world’s tropical forests. Several techniques are available for the remediation of oil
contaminated areas. Biodegradation appears to be the best suited to mangrove ecosystems. However this technique remains
confined to the laboratory. Field tests in situ need to be conducted in order to evaluate the results obtained in the laboratory