41 research outputs found

    Serotype Profile of Nasopharyngeal Isolates of Streptococcus pneumoniae Obtained from Children in Burkina Faso before and after Mass Administration of Azithromycin.

    Get PDF
    Mass drug administration (MDA) with azithromycin (AZ) has been used successfully to control trachoma. However, several studies have shown that MDA with AZ has led to the emergence of resistance to AZ in Streptococcus pneumoniae. The emergence of resistance to AZ has also been observed when this antibiotic was combined with the antimalarials used for seasonal malaria chemoprevention (SMC). The development of antibiotic resistance, including resistance to AZ, is sometimes associated with the emergence of a bacterial clone that belongs to a specific serotype. We hypothesize that the increase in resistance of S. pneumoniae observed after 3 years of SMC with AZ might be associated with a change in the distribution of pneumococcal serotypes. Therefore, 698 randomly selected isolates from among the 1,468 isolates of S. pneumoniae obtained during carriage studies undertaken during an SMC plus AZ trial were serotyped. A polymerase chain reaction (PCR) multiplex assay using an algorithm adapted to the detection of the pneumococcal serotypes most prevalent in African countries was used for initial serotyping, and the Quellung technique was used to complement the PCR technique when necessary. Fifty-six serotypes were detected among the 698 isolates of S. pneumoniae. A swift appearance and disappearance of many serotypes was observed, but some serotypes including 6A, 19F, 19A, 23F, and 35B were persistent. The distribution of serotypes between isolates obtained from children who had received AZ or placebo was similar. An increase in AZ resistance was seen in several serotypes following exposure to AZ. Mass drug administration with AZ led to the emergence of resistance in pneumococci of several different serotypes and did not appear to be linked to the emergence of a single serotype

    The complete mitochondrial genome of rare and critically endangered Anilany helenae (Microhylidae) of Madagascar

    Get PDF
    Anilany helenae is a Critically Endangered frog native to the central highlands of Madagascar. Due to ongoing habitat loss of its known range, this species’ population is considered declining, while little is known about its ecology, behavior, and taxonomy. Within the context of developing tools that can aid the conservation of Madagascar’s amphibian fauna, and add to the continued understanding of their taxonomy, we assembled its complete mitochondrial genome (Genbank Accession number MZ751042). This contributes the first complete mitochondrial genome of a microhylid from Madagascar, despite there being over 100 species in the Cophylinae subfamily alone. Anilany helenae’s circular mitochondrial genome is 17,519 bp long, contains 37 genes, and exhibits differences in gene arrangement compared with other microhylids, including the placement of protein coding genes nad1 and nad2. A phylogeny of the 13 protein coding genes of the few Madagascan anuran mitogenomes available, along with species from Africa and East Asia, places A. helenae along with the New Guinean Mantophryne lateralis in a basal position with respect to the other microhylids in the tree

    Impact of mass administration of azithromycin as a preventive treatment on the prevalence and resistance of nasopharyngeal carriage of Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is a major cause of serious illness and death in children, indicating the need to monitor prevalent strains, particularly in the vulnerable pediatric population. Nasal carriage of S. aureus is important as carriers have an increased risk of serious illness due to systemic invasion by this pathogen and can transmit the infection. Recent studies have demonstrated the effectiveness of azithromycin in reducing the prevalence of nasopharyngeal carrying of pneumococci, which are often implicated in respiratory infections in children. However, very few studies of the impact of azithromycin on staphylococci have been undertaken. During a clinical trial under taken in 2016, nasal swabs were collected from 778 children aged 3 to 59 months including 385 children who were swabbed before administration of azithromycin or placebo and 393 after administration of azithromycin or placebo. Azithromycin was given in a dose of 100 mg for three days, together with the antimalarials sulfadoxine-pyrimethamine and amodiaquine, on four occasions at monthly intervals during the malaria transmission season. These samples were cultured for S. aureus as well as for the pneumococcus. The S. aureus isolates were tested for their susceptibility to azithromycin (15 g), penicillin (10 IU), and cefoxitine (30 g) (Oxoid Ltd). S. aureus was isolated from 13.77% (53/385) swabs before administration of azithromycin and from 20.10% (79/393) six months after administration (PR = 1.46 [1.06; 2.01], p = 0.020). Azithromycin resistance found in isolates of S. aureus did not differ significantly before and after intervention (26.42% [14/53] vs 16.46% [13/79], (PR = 0.62 [0.32; 1.23], p = 0.172). Penicillin resistance was very pronounced, 88.68% and 96.20% in pre-intervention and in post-intervention isolates respectively, but very little Methicillin Resistance (MRSA) was detected (2 cases before and 2 cases after intervention). Monitoring antibiotic resistance in S. aureus and other bacteria is especially important in Burkina Faso due to unregulated consumption of antibiotics putting children and others at risk

    4D flow cardiovascular magnetic resonance consensus statement

    Get PDF

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore