2,681 research outputs found

    Model-independent Limits from Spin-dependent WIMP Dark Matter Experiments

    Full text link
    Spin-dependent WIMP searches have traditionally presented results within an odd group approximation and by suppressing one of the spin-dependent interaction cross sections. We here elaborate on a model-independent analysis in which spin-dependent interactions with both protons and neutrons are simultaneously considered. Within this approach, equivalent current limits on the WIMP-nucleon interaction at WIMP mass of 50 GeV/c2^{2} are either σp≤0.7\sigma_{p}\leq0.7 pb, σn≤0.2\sigma_{n}\leq0.2 pb or ∣ap∣≤0.4|a_{p}|\leq0.4, ∣an∣≤0.7|a_{n}|\leq0.7 depending on the choice of cross section or coupling strength representation. These limits become less restrictive for either larger or smaller masses; they are less restrictive than those from the traditional odd group approximation regardless of WIMP mass. Combination of experimental results are seen to produce significantly more restrictive limits than those obtained from any single experiment. Experiments traditionally considered spin-independent are moreover found to severely limit the spin-dependent phase space. The extension of this analysis to the case of positive signal experiments is explored.Comment: 12 pages, 12 figures, submitted to Phys. Rev.

    GADZOOKS! Antineutrino Spectroscopy with Large Water Cerenkov Detectors

    Full text link
    We propose modifying large water \v{C}erenkov detectors by the addition of 0.2% gadolinium trichloride, which is highly soluble, newly inexpensive, and transparent in solution. Since Gd has an enormous cross section for radiative neutron capture, with ∑Eγ=8\sum E_\gamma = 8 MeV, this would make neutrons visible for the first time in such detectors, allowing antineutrino tagging by the coincidence detection reaction νˉe+p→e++n\bar{\nu}_e + p \to e^+ + n (similarly for νˉμ\bar{\nu}_\mu). Taking Super-Kamiokande as a working example, dramatic consequences for reactor neutrino measurements, first observation of the diffuse supernova neutrino background, Galactic supernova detection, and other topics are discussed.Comment: 4 pages, 1 figure, submitted to Phys. Rev. Lett. Correspondence to [email protected], [email protected]

    Measurement of the Hyperfine Structure and Isotope Shifts of the 3s23p2 3P2 to 3s3p3 3Do3 Transition in Silicon

    Full text link
    The hyperfine structure and isotope shifts of the 3s23p2 3P2 to 3s3p3 3Do3 transition in silicon have been measured. The transition at 221.7 nm was studied by laser induced fluorescence in an atomic Si beam. For 29Si, the hyperfine A constant for the 3s23p2 3P2 level was determined to be -160.1+-1.3 MHz (1 sigma error), and the A constant for the 3s3p3 3Do3 level is -532.9+-0.6 MHz. This is the first time that these constants were measured. The isotope shifts (relative to the abundant isotope 28Si) of the transition were determined to be 1753.3+-1.1 MHz for 29Si and 3359.9+-0.6 MHz for 30Si. This is an improvement by about two orders of magnitude over a previous measurement. From these results we are able to predict the hyperfine structure and isotope shift of the radioactive 31Si atom, which is of interest in building a scalable quantum computer

    Heavy Superheated Droplet Detectors as a Probe of Spin-independent WIMP Dark Matter Existence

    Full text link
    At present, application of Superheated Droplet Detectors (SDDs) in WIMP dark matter searches has been limited to the spin-dependent sector, owing to the general use of fluorinated refrigerants which have high spin sensitivity. Given their recent demonstration of a significant constraint capability with relatively small exposures and the relative economy of the technique, we consider the potential impact of heavy versions of such devices on the spin-independent sector. Limits obtainable from a CF3I\mathrm{CF_{3}I}-loaded SDD are estimated on the basis of the radiopurity levels and backgrounds already achieved by the SIMPLE and PICASSO experiments. With 34 kgd exposure, equivalent to the current CDMS, such a device may already probe to below 10−6^{-6} pb in the spin-independent cross section.Comment: 9 pages, 4 figures, accepted Phys. Rev.

    Ground state magnetic dipole moment of 35K

    Full text link
    The ground state magnetic moment of 35K has been measured using the technique of nuclear magnetic resonance on beta-emitting nuclei. The short-lived 35K nuclei were produced following the reaction of a 36Ar primary beam of energy 150 MeV/nucleon incident on a Be target. The spin polarization of the 35K nuclei produced at 2 degrees relative to the normal primary beam axis was confirmed. Together with the mirror nucleus 35S, the measurement represents the heaviest T = 3/2 mirror pair for which the spin expectation value has been obtained. A linear behavior of gp vs. gn has been demonstrated for the T = 3/2 known mirror moments and the slope and intercept are consistent with the previous analysis of T = 1/2 mirror pairs.Comment: 14 pages, 5 figure

    Solar Neutrinos from CNO Electron Capture

    Full text link
    The neutrino flux from the sun is predicted to have a CNO-cycle contribution as well as the known pp-chain component. Previously, only the fluxes from beta+ decays of 13N, 15O, and 17F have been calculated in detail. Another neutrino component that has not been widely considered is electron capture on these nuclei. We calculate the number of interactions in several solar neutrino detectors due to neutrinos from electron capture on 13N, 15O, and 17F, within the context of the Standard Solar Model. We also discuss possible non-standard models where the CNO flux is increased.Comment: 4 pages, 1 figure, submitted to Phys. Rev. C; v2 has minor changes including integration over solar volume and addition of missing reference to previous continuum electron capture calculation; v3 has minor changes including addition of references and the correction of a small (about 1%) numerical error in the table

    Shell-Model Effective Operators for Muon Capture in ^{20}Ne

    Get PDF
    It has been proposed that the discrepancy between the partially-conserved axial-current prediction and the nuclear shell-model calculations of the ratio CP/CAC_P/C_A in the muon-capture reactions can be solved in the case of ^{28}Si by introducing effective transition operators. Recently there has been experimental interest in measuring the needed angular correlations also in ^{20}Ne. Inspired by this, we have performed a shell-model analysis employing effective transition operators in the shell-model formalism for the transition 20Ne(0g.s.+)+μ−→20F(1+;1.057MeV)+νμ^{20}Ne(0^+_{g.s.})+\mu^- \to ^{20}F(1^+; 1.057 MeV) + \nu_\mu. Comparison of the calculated capture rates with existing data supports the use of effective transition operators. Based on our calculations, as soon as the experimental anisotropy data becomes available, the limits for the ratio CP/CAC_P/ C_A can be extracted.Comment: 9 pages, 3 figures include

    A structural evaluation of the tungsten isotopes via thermal neutron capture

    Full text link
    Total radiative thermal neutron-capture γ\gamma-ray cross sections for the 182,183,184,186^{182,183,184,186}W isotopes were measured using guided neutron beams from the Budapest Research Reactor to induce prompt and delayed γ\gamma rays from elemental and isotopically-enriched tungsten targets. These cross sections were determined from the sum of measured γ\gamma-ray cross sections feeding the ground state from low-lying levels below a cutoff energy, Ecrit_{\rm crit}, where the level scheme is completely known, and continuum γ\gamma rays from levels above Ecrit_{\rm crit}, calculated using the Monte Carlo statistical-decay code DICEBOX. The new cross sections determined in this work for the tungsten nuclides are: σ0(182W)=20.5(14)\sigma_{0}(^{182}{\rm W}) = 20.5(14) b and σ11/2+(183Wm,5.2s)=0.177(18)\sigma_{11/2^{+}}(^{183}{\rm W}^{m}, 5.2 {\rm s}) = 0.177(18) b; σ0(183W)=9.37(38)\sigma_{0}(^{183}{\rm W}) = 9.37(38) b and σ5−(184Wm,8.33μs)=0.0247(55)\sigma_{5^{-}}(^{184}{\rm W}^{m}, 8.33 \mu{\rm s}) = 0.0247(55) b; σ0(184W)=1.43(10)\sigma_{0}(^{184}{\rm W}) = 1.43(10) b and σ11/2+(185Wm,1.67min)=0.0062(16)\sigma_{11/2^{+}}(^{185}{\rm W}^{m}, 1.67 {\rm min}) = 0.0062(16) b; and, σ0(186W)=33.33(62)\sigma_{0}(^{186}{\rm W}) = 33.33(62) b and σ9/2+(187Wm,1.38μs)=0.400(16)\sigma_{9/2^{+}}(^{187}{\rm W}^{m}, 1.38 \mu{\rm s}) = 0.400(16) b. These results are consistent with earlier measurements in the literature. The 186^{186}W cross section was also independently confirmed from an activation measurement, following the decay of 187^{187}W, yielding values for σ0(186W)\sigma_{0}(^{186}{\rm W}) that are consistent with our prompt γ\gamma-ray measurement. The cross-section measurements were found to be insensitive to choice of level density or photon strength model, and only weakly dependent on Ecrit_{\rm crit}. Total radiative-capture widths calculated with DICEBOX showed much greater model dependence, however, the recommended values could be reproduced with selected model choices. The decay schemes for all tungsten isotopes were improved in these analyses.Comment: 25 pages, 15 figures, 15 table

    Level densities and thermodynamical properties of Pt and Au isotopes

    Full text link
    The nuclear level densities of 194−196^{194-196}Pt and 197,198^{197,198}Au below the neutron separation energy have been measured using transfer and scattering reactions. All the level density distributions follow the constant-temperature description. Each group of isotopes is characterized by the same temperature above the energy threshold corresponding to the breaking of the first Cooper pair. A constant entropy excess ΔS=1.9\Delta S=1.9 and 1.11.1 kBk_B is observed in 195^{195}Pt and 198^{198}Au with respect to 196^{196}Pt and 197^{197}Au, respectively, giving information on the available single-particle level space for the last unpaired valence neutron. The breaking of nucleon Cooper pairs is revealed by sequential peaks in the microcanonical caloric curve

    SeaWiFS technical report series. Volume 10: Modeling of the SeaWiFS solar and lunar observations

    Get PDF
    Post-launch stability monitoring of the Sea-viewing Wide Field-of-view Sensor (SeaWifs) will include periodic sweeps of both an onboard solar diffuser plate and the moon. The diffuser views will provide short-term checks and the lunar views will monitor long-term trends in the instrument's radiometric stability. Models of the expected sensor response to these observations were created on the SeaWiFS computer at the National Aeronautics and Space Administration's (NASA) Goddard Space Flight Center (GSFC) using the Interactive Data Language (IDL) utility with a graphical user interface (GUI). The solar model uses the area of intersecting circles to simulate the ramping of sensor response while viewing the diffuser. This model is compared with preflight laboratory scans of the solar diffuser. The lunar model reads a high-resolution lunar image as input. The observations of the moon are simulated with a bright target recovery algorithm that includes ramping and ringing functions. Tests using the lunar model indicate that the integrated radiance of the entire lunar surface provides a more stable quantity than the mean of radiances from centralized pixels. The lunar model is compared to ground-based scans by the SeaWiFS instrument of a full moon in December 1992. Quality assurance and trend analyses routines for calibration and for telemetry data are also discussed
    • …
    corecore