36 research outputs found
A functional genomic perspective on human well-being
To identify molecular mechanisms underlying the prospective health advantages associated with psychological well-being, we analyzed leukocyte basal gene expression profiles in 80 healthy adults who were assessed for hedonic and eudaimonic well-being, as well as potentially confounded negative psychological and behavioral factors. Hedonic and eudaimonic well-being showed similar affective correlates but highly divergent transcriptome profiles. Peripheral blood mononuclear cells from people with high levels of hedonic well-being showed up-regulated expression of a stress-related conserved transcriptional response to adversity (CTRA) involving increased expression of proinflammatory genes and decreased expression of genes involved in antibody synthesis and type I IFN response. In contrast, high levels of eudaimonic well-being were associated with CTRA down-regulation. Promoter-based bioinformatics implicated distinct patterns of transcription factor activity in structuring the observed differences in gene expression associated with eudaimonic well-being (reduced NF-ÎșB and AP-1 signaling and increased IRF and STAT signaling). Transcript origin analysis identified monocytes, plasmacytoid dendritic cells, and B lymphocytes as primary cellular mediators of these dynamics. The finding that hedonic and eudaimonic well-being engage distinct gene regulatory programs despite their similar effects on total well-being and depressive symptoms implies that the human genome may be more sensitive to qualitative variations in well-being than are our conscious affective experiences
Intramolecular Charge-Assisted Hydrogen Bond Strength in Pseudochair Carboxyphosphate
Carboxyphosphate,
a suspected intermediate in ATP-dependent carboxylases,
has not been isolated nor observed directly by experiment. Consequently,
little is known concerning its structure, stability, and ionization
state. Recently, carboxyphosphate as either a monoanion or dianion
has been shown computationally to adopt a novel pseudochair conformation
featuring an intramolecular charge-assisted hydrogen bond (CAHB).
In this work, additive and subtractive correction schemes to the commonly
employed openâclosed method are used to estimate the strength
of the CAHB. Truhlarâs Minnesota M06-2X functional with Dunningâs
aug-cc-pVTZ basis set has been used for geometry optimization, energy
evaluation, and frequency analysis. The CHARMM force field has been
used to approximate the Pauli repulsive terms in the closed and open
forms of carboxyphosphate. From our additive correction scheme, differential
Pauli repulsion contributions between the pseudochair (closed) and
open conformations of carboxyphosphate are found to be significant
in determining the CAHB strength. The additive correction modifies
the CAHB prediction (Î<i>E</i><sub>closedâopen</sub>) of â14 kcal/mol for the monoanion and â12 kcal/mol
for the dianion to â22.9 and â18.4 kcal/mol, respectively.
Results from the subtractive technique reinforce those from our additive
procedure, where the predicted CAHB strength ranges from â17.8
to â25.4 kcal/mol for the monoanion and from â15.7 to
â20.9 kcal/mol for the dianion. Ultimately, we find that the
CAHB in carboxyphosphate meets the criteria for short-strong hydrogen
bonds. However, carboxyphosphate has a unique energy profile that
does not result in the symmetric double-well behavior of low-barrier
hydrogen bonds. These findings provide deeper insight into the pseudochair
conformation of carboxyphosphate, and lead to an improved mechanistic
understanding of this intermediate in ATP-dependent carboxylases
Development of a Neuroscience-oriented âMethodsâ Course for Graduate Students of Pharmacology and Toxicology
To provide graduate students in pharmacology/toxicology exposure to, and cross-training in, a variety of relevant laboratory skills, the Duquesne University School of Pharmacy developed a âmethodsâ course as part of the core curriculum. Because some of the participating departmental faculty are neuroscientists, this course often applied cutting-edge techniques to neuroscience-based systems, including experiments with brain G proteinâcoupled receptors. Techniques covered by the course include animal handling and behavioral testing, bacterial and mammalian cell culture, enzyme-linked immunosorbent assay, western blotting, receptor binding of radioligands, plasmid DNA amplification and purification, reverse transcriptase-polymerase chain reaction, gel electrophoresis, and UV-visible and fluorescence spectroscopy. The course also encompasses research aspects such as experimental design and record keeping, statistical analysis, and scientific writing. Students were evaluated via laboratory reports and examinations, and students in turn evaluated the course using a detailed exit survey. This course introduces the graduate student to many more techniques and approaches than can be provided by the traditional graduate ârotationâ format alone and should serve as a template for graduate programs in many basic research disciplines
Virulence of a Phosphoribosylaminoimidazole Carboxylase-Deficient Candida albicans Strain in an Immunosuppressed Murine Model of Systemic Candidiasis
The relative pathogenicities of three Candida albicans strains differing in the function of ADE2 (the gene encoding phosphoribosylaminoimidazole carboxylase) were evaluated in a murine candidiasis model. C. albicans strain CAI7 (ade2/ade2), previously constructed by site-specific recombination, was avirulent in immunosuppressed mice compared to the parent strain, CAF2-1, and a heterozygous ADE2/ade2 strain obtained by transforming CAI7 with a wild-type allele. The reduced virulence of CAI7 was correlated with the inability to proliferate in either synthetic medium or serum without the exogenous addition of >10 ÎŒg of adenine/ml. The loss of virulence upon site-specific disruption of the ade2 locus, and the restoration of wild-type virulence with the repair of just one ade2 allele, confirmed that the ADE2 gene and de novo purine biosynthesis were required for Candida pathogenicity. The potential of the phosphoribosylaminoimidazole carboxylase enzyme as a novel target for antifungal drug discovery is discussed