4 research outputs found

    INTERACTION PATTERN OF FULLERENE FAMILY WITH DIFFERENT FORMS OF DNA

    Get PDF
    Fullerenes have attracted considerable attention due to their unique chemical structure and potential applications. In this study fullerenes (C20 to C180) were interacted with different forms of DNA i.e. A, B and Z-forms. And no such change in the binding score was observed with the change in the sequence of DNA. In fact, binding score increases with the increase in the molecular weight of the fullerene while interacting with A & B-form of DNA but Z-form of DNA shows no regular pattern of binding. Number of interacting base pairs increases as the molecular size of fullerene increases. And the groove binding depends on the form of DNA, fullerene and fullerene family binds in major groove of A-DNA while binds in both major and minor grooves in B and Z-form of DNA. This study reveals that binding pattern of fullerene family with DNA, which can disrupt its structure and may leads to several biological errors

    Molecular Docking of Known Carcinogen 4- (Methyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) with Cyclin Dependent Kinases towards Its Potential Role in Cell Cycle Perturbation

    Get PDF
    Cell cycle is maintained almost all the times and is controlled by various regulatory proteins and their complexes (Cdk+Cyclin) in different phases of interphase (G1, S and G2) and mitosis of cell cycle. A number of mechanisms have been proposed for the initiation and progression of carcinogenesis by abruption in cell cycle process. One of the important features of cancer/carcinogenesis is functional loss of these cell cycle regulatory proteins particularly in CDKs and cyclins. We hypothesize that there is a direct involvement of these cell cycle regulatory proteins not only at the genetic level but also proteins level, during the initiation of carcinogenesis. Therefore, it becomes significant to determine inconsistency in the functioning of regulatory proteins due to interaction with carcinogen 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Hence, we investigated the interaction efficiency of NNK, against cell cycle regulatory proteins. We found a different value of ΔG (free energy of binding) among the studied proteins ranging between -3.29 to -7.25 kcal/mol was observed. To validate the results, we considered Human Oxy-Hemoglobin at 1.25 Å Resolution, [PDB_ID:1HHO] as a +ve control, (binding energy -6.06 kcal/mol). Finally, the CDK8 (PDB_ID:3RGF) and CDK2 (PDB_ID:3DDP) regulatory proteins showing significantly strong molecular interaction with NNK -7.25 kcal/mol, -6.19 kcal/mol respectively were analyzed in details. In this study we predicted that CDK8 protein fails to form functional complex with its complementary partner cyclin C in presence of NNK. Consequently, inconsistency of functioning in regulatory proteins might lead to the abruption in cell cycle progression; contribute to the loss of cell cycle control and subsequently increasing the possibility of carcinogenesis

    Binding Pattern Elucidation of NNK and NNAL Cigarette Smoke Carcinogens with NER Pathway Enzymes: an Onco- Informatics Study

    Get PDF
    Cigarette smoke derivatives like NNK (4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone) and NNAL (4-(methylnitrosamino)-1-(3-pyridyl)-1-butan-1-ol) are well-known carcinogens. We analyzed the interaction of enzymes involved in the NER (nucleotide excision repair) pathway with ligands (NNK and NNAL). Binding was characterized for the enzymes sharing equivalent or better interaction as compared to +Ve control. The highest obtained docking energy between NNK and enzymes RAD23A, CCNH, CDK7, and CETN2 were -7.13 kcal/mol, -7.27 kcal/mol, -8.05 kcal/mol and -7.58 kcal/mol respectively. Similarly the highest obtained docking energy between NNAL and enzymes RAD23A, CCNH, CDK7, and CETN2 were -7.46 kcal/mol, -7.94 kcal/mol, -7.83 kcal/mol and -7.67 kcal/mol respectively. In order to find out the effect of NNK and NNAL on enzymes involved in the NER pathway applying protein-protein interaction and protein-complex (i.e. enzymes docked with NNK/ NNAL) interaction analysis. It was found that carcinogens are well capable to reduce the normal functioning of genes like RAD23A (HR23A), CCNH, CDK7 and CETN2. In silico analysis indicated loss of functions of these genes and their corresponding enzymes, which possibly might be a cause for alteration of DNA repair pathways leading to damage buildup and finally contributing to cancer formation

    Interaction pattern for the complex of B-DNAFullerene compounds with a set of known replication proteins using docking study

    Get PDF
    Fullerenes have attracted considerable attention due to their unique chemical structure and potential applications which has opened wide venues for possible human exposure to various fullerene types. Therefore, in depth knowledge of how fullerene may interfere with various cellular processes becomes quite imperative. The present study was designed to investigate how the presence of fullerene affect the binding of DNA with different enzymes involved in replication process. Different fullerenes were first docked with DNA and then binding scores of different enzymes was analyzed with fullerene docked DNA. C30, C40 & C50 once docked with DNA, reduced the binding score of primase, whereas no significant change in the binding score was observed with the helicase, ssb protein, dna pol δ, dna pol ɛ, ligase, DNA clamp, and topoisomerases. On the contrast, the binding score of RPA14 decreases in fluctuating manner while interacting with increasing molecular weight of fullerene bound single-stranded DNA complex. The study revealed the affect of fullerene family interacting with DNA on the binding pattern of enzymes involved in replication process. Study suggests that the presence of most of fullerenes may not affect the activity of these enzymes necessary for replication process whereas C30, C40 & C50 may disrupt the activity of primase, (strating point for DNA polymerase) its docking score decreases from 13820 to 10702
    corecore