26 research outputs found

    Impact of Climate Change on the Storm Water System in Al Hillah City-Iraq

    Get PDF
    The impact of climate change is increasingly important to the design of urban water infrastructure like stormwater systems, sewage systems and drinking water systems. Growing evidence indicates that the water sector will not only be affected by climate change, but it will reflect and deliver many of its impacts through floods, droughts, or extreme rainfall events. Water resources will change in both quantity and quality, and the infrastructure of stormwater and wastewater facilities may face greater risk of damage caused by storms, floods and droughts. The effect of the climate change will put more difficulties on operations to disrupted services and increased cost of the water and wastewater services. Governments, urban planners, and water managers should therefore re-examine development processes for municipal water and wastewater services and are adapt strategies to incorporate climate change into infrastructure design, capital investment projects, service provision planning, and operation and maintenance. According to the Intergovernmental Panel on Climate Change, the global mean temperature has increased by 0,7 °C during the last 100 years and, as a consequence, the hydrological cycle has intensified with, for example, more acute rainfall events. As urban drainage systems have been developed over a long period of time and design criteria are based upon climatic characteristics, these changes will affect the systems and the city accordingly. The overall objective of this thesis is to increase the knowledge about the climate change impacts on the stormwater system in Al Hillah city/Iraq. In more detail, the objective is to investigate how climate change could affect urban drainage systems specifically stormwater infrastructure, and also to suggest an adaptation plan for these changes using adaptation plans examples from international case studies. Three stochastic weather generators have been investigated in order to understand the climate and climate change in Al Hillah. The stochastic weather generators have been used in different kind of researches and studies; for example in hydrology, floods management, urban water design and analysis, and environmental protection. To make such studies efficient, it is important to have long data records (typically daily data) so the weather generator can generate synthetic daily weather data based on a sound statistical background. Some weather generators can produce the climate change scenarios for different kind of global climate models. They can be used also to produce synthetic data for a site that does not have enough data by using interpolation methods. To ensure that the weather generator is fitting the climate of the region properly, it should be tested against observed data, whether the synthetic data are sufficiently similar. At the same time, the accuracy of the weather generator is different from region to region and depends on the respective climate properties. Testing three weather generators GEM6, ClimGen and LARS-WG at eight climate stations in the region of Babylon governorate/Iraq, where Al Hillah is located, is one of the purposes of the first part of this study. LARS-WG uses a semi-parametric distribution (developed distribution), whereas GEM6 and ClimGen use a parametric distribution (less complicated distribution). Different statistical tests have been selected to compare observed and synthetic weather data for the same kind, for instance, the precipitation and temperature distribution (wet and dry season). The result shows that LARS-WG represents the observed data for Babylon region in a better way than ClimGen, whereas GEM6 seems to misfit the observed data. The synthetic data will be used for a first simulation of urban run-off during the wet season and the consequences of climate change for the design and re-design of the urban drainage system in Al Hillah. The stochastic weather generator LARS is then used to generate ensembles of future weather data using five Global Climate Models (GCMs) that best captured the full range of uncertainty. These Global Climate Models are used to construct future climate scenarios of temperature and precipitation over the region of Babylon Governorate in Iraq. The results show an increase in monthly temperatures and a decrease in the total amount of rain, yet the extreme rain events will be more intense in a shorter time. Changes in the amount, timing, and intensity of rain events can affect the amount of stormwater runoff that needs to be controlled. The climate change calculated projections may make existing stormwater-related flooding worse. Different districts in Al Hillah city may face more frequent stormwater floods than before due to the climate change projections. All the results that have been taken from the Global Climate Models are in a daily resolution format and in order to run the Storm Water Management Model it is important to have all data in a minimum of one hour resolution. In order to fulfill this condition a disaggregation model has been used. Some hourly precipitation data were required to calibrate the temporal disaggregation model; however none of the climate stations and rain gauges in the area of interest have hourly resolution data, so the hourly data from Baghdad airport station have been used for that calibration. The changes in the flood return periods have been seen in the projected climate change results, and a return period will only remain valid over time if environmental conditions do not change. This means that return periods used for planning purposes may need to be updated more often than previously, because values calculated based on the past 30 years of data may become unrepresentative within a relatively short time span. While return periods provide useful guidance for planning the effects of flooding and related impacts, they need to be used with care, and allowances have to be made for extremes that may occur more often than may be expected. In the study area with separated stormwater systems, the Storm Water Management Model simulation shows that the number of surface floods as well as of the floods increases in the future time periods 2050s and 2080s. Future precipitation will also increase both the flooding frequency and the duration of floods; therefore the need to handle future situations in urban drainage systems and to have a well-planned strategy to cope with future conditions is evident. The overall impacts on urban drainage systems due to the increase of intensive precipitation events need to be adapted. For that reason, recommendations for climate change adaptation in the city of Al Hillah have been suggested. This has been accomplished by merging information from the review of five study cases, selected based on the amount and quality of information available. The cities reviewed are Seattle (USA), Odense (Denmark), Tehran (Iran), and Khulna (Bangladesh).:Preface Acknowledgment Abstract Kurzfassung Contents List of Figures List of Tables List of Listing List of Abbreviation Introduction 1.1. Background of The Research 1.2. The Climate Change Challenge 1.3. Urban Water Systems and Climate Change 1.4. Climate Change and Urban Drainage Adaptation Plan 1.5. Objectives of the Research 1.6. Research Problems and Hypothesis 1.7. Dissertation Structure 1.8. Delimitations Climate History and Climate Change Projections in Al Hillah City Chapter One: State of the Art on Climate Change 2.1.1. The Earth’s Climate System 2.1.2. Climate Change 2.1.3. Emission Scenarios 2.1.4. Global Climate Change 2.1.5. Climate Models 2.1.6. Downscaling Chapter Two: Topography and Climate of the Study Area 2.2.1. Location 2.2.2. Topography 2.2.3. Climate Chapter Three: Climate Change - Methodology and Data 2.3.1. Methodology 2.3.1.1. Stochastic Weather Generators 2.3.1.2. Description of Generators Used in the Comparison 2.3.1.3. Statistical Analysis Comparison Test 2.3.2. Data 2.3.2.1. Required data for modelling 2.3.2.2. Historical daily data required for the weather generators 2.3.2.3. Minimum requirements 2.3.2.4. Data Availability Chapter Four: Results Analysis and Evaluation of Climate Change 2.4.1. Weather Generators Comparison Test results 2.4.1.1.The p-value test Temperature Comparison results Precipitation Comparison Results 2.4.2. LARS Weather Generator Future Scenario 2.4.2.1.1. Climate Change Scenarios for the region of Babylon governorate Storm Water System and Urban Flooding in Al Hillah City Chapter one: Urban Water Modelling 3.1.1. General Overview and Background 3.1.1.1. Storm water systems 3.1.2. Urban Runoff Models 3.1.3. An Overview of Runoff Estimation Methods 3.1.3.1. Computer Modelling in Urban Drainage 3.1.3.2.Statistical Rational Method (SRM) 3.1.4. Models Based on Statistical Rational Method 3.1.5. Urban Rainfall-Runoff Methods 3.1.6. Accuracy Level in Urban Catchment Models Chapter Two: Urban Water System in Al Hillah City and Data Requirement for Modelling 3.2.1. History 3.2.2. Current Situation 3.2.2.1. Urban water system Iraq 3.2.2.2. Urban Water description in Babylon governorate 3.2.2.3. Drinking water network 3.2.2.4. Sewerage infrastructure 3.2.3. Required data for modelling Chapter Three: Methodology to Disaggregate Daily Rain Data and Model Storm Water Runoff 3.3.1. Temporal Disaggregation (hourly from daily) 3.3.1.1. Background of Disaggregation 3.3.1.2. Disaggregation techniques 3.3.1.3. DiMoN Disaggregation Tool 3.3.1.4. Input Data 3.3.1.5. Methods Formerly Used 3.3.2. EPA Storm Water Management Model (SWMM) 3.3.2.1. Verification and Calibration 3.3.2.2. Stormwater Management Model PCSWMM 3.3.2.3. Complete support for all USEPA SWMM5 engine capabilities Chapter Four: Urban Flooding Results 3.4.1. Disaggregation of the daily rain data to hourly data 3.4.1.1.The 1 hour events properties 3.4.1.2. Estimating the rain events in each climate change scenario 3.4.1.3. Past, Current and future return periods 3.4.2. Storm Water Management Model PCSWMM Calibration 3.4.3.Return periods and Urban Floods 3.4.3.1.Network simulation 3.4.3.2.Properties with previous flooding problems 3.4.3.3.Storm water system simulation under 1 hour-2, 5 and 10 years return period 3.4.3.4.Storm water system simulation under 1 hour-25 years return period 3.4.3.5.Storm water system simulation under 1 hour-50 years return period 3.4.3.6. Storm water system simulation under 1 hour – 100, 200, 500 and 1000 years return period 3.4.3.7.Total Flooding Adaptation Plan for Al Hillah City Chapter One: International Case Studies 4.1.1. Historical precipitation analysis 4.1.2. Current and projected future climate change, impacts and adaptation plan for each selected city 4.1.2.1. Seattle 4.1.2.2. Odense 4.1.2.3. Tehran 4.1.2.4. Khulna 4.1.2.5. Melbourne 4.1.3. Drainage System of the Studied Cities 4.1.3.1. Drainage System in Seattle 4.1.3.2. Drainage System in Odense 4.1.3.3. Drainage System in Tehran 4.1.3.4. Drainage System in Khulna 4.1.3.5. Drainage System in Melbourne Chapter Two: Adaptation Plan for Al Hillah City 4.2.1. Conclusions from Adaptation Options Analysed 4.2.2. Suggestions for Al Hillah City 4.2.3. Adaptation Actions Overall Conclusion BibliographyDie Auswirkungen des Klimawandels auf die Gestaltung der städtischen Wasserinfrastruktur wie Regenwasser, Kanalisation und Trinkwassersysteme werden immer wichtiger. Eine wachsende Anzahl von Belegen zeigt, dass der Wassersektor nicht nur durch den Klimawandel beeinflusst werden wird, aber er wird zu reflektieren und liefern viele seiner Auswirkungen durch Überschwemmungen, Dürren oder extreme Niederschlagsereignisse. Die Wasserressourcen werden sich in Quantität und Qualität verändern, und die Infrastruktur von Regen-und Abwasseranlagen kann einer größeren Gefahr von Schäden durch Stürme, Überschwemmungen und Dürren ausgesetzt sein. Die Auswirkungen des Klimawandels werden zu mehr Schwierigkeiten im Betrieb gestörter Dienstleistungen und zu erhöhten Kosten für Wasser-und Abwasserdienstleistungen führen. Regierungen, Stadtplaner, und Wasser-Manager sollten daher die Entwicklungsprozesse für kommunale Wasser-und Abwasserdienstleistungen erneut überprüfen und Strategien anpassen, um den Klimawandel in Infrastruktur-Design, Investitionsprojekte, Planung von Leistungserbringung, sowie Betrieb und Wartung einzuarbeiten. Nach Angaben des Intergovernmental Panel on Climate Change hat die globale Mitteltemperatur in den letzten 100 Jahren um 0,7 °C zugenommen, und in der Folge hat sich der hydrologische Zyklus intensiviert mit, zum Beispiel, stärkeren Niederschlagsereignisse. Da die städtischen Entwässerungssysteme über einen langen Zeitraum entwickelt wurden und Design-Kriterien auf klimatischen Eigenschaften beruhen, werden diese Veränderungen die Systeme und die Stadt entsprechend beeinflussen. Das übergeordnete Ziel dieser Arbeit ist es, das Wissen über die Auswirkungen des Klimawandels auf das Regenwasser-System in der Stadt Hilla / Irak zu bereichern. Im Detail ist das Ziel, zu untersuchen, wie der Klimawandel die Siedlungsentwässerung und insbesondere die Regenwasser-Infrastruktur betreffen könnte. Desweiteren soll ein Anpassungsplan für diese Änderungen auf der Grundlage von beispielhaften Anpassungsplänen aus internationalen Fallstudienvorgeschlagen werden. Drei stochastische Wettergeneratoren wurden untersucht, um das Klima und den Klimawandel in Hilla zu verstehen. Stochastische Wettergeneratoren wurden in verschiedenen Untersuchungen und Studien zum Beispiel in der Hydrologie sowie im Hochwasser-Management, Siedlungswasser-Design- und Analyse, und Umweltschutz eingesetzt. Damit solche Studien effizient sind, ist es wichtig, lange Datensätze (in der Regel Tageswerte) haben, so dass der Wettergenerator synthetische tägliche Wetterdaten erzeugen kann, dieauf einem soliden statistischen Hintergrund basieren. Einige Wettergeneratoren können Klimaszenarien für verschiedene Arten von globalen Klimamodellen erzeugen. Sie können unter Verwendung von Interpolationsverfahren auch synthetische Daten für einen Standort generieren, für den nicht genügend Daten vorliegen. Um sicherzustellen, dass der Wettergenerator dem Klima der Region optimal entspricht, sollte gegen die beobachteten Daten geprüft werden, ob die synthetischen Daten ausreichend ähnlich sind. Gleichzeitig unterscheidet sich die Genauigkeit des Wettergenerator von Region zu Region und abhängig von den jeweiligen Klimaeigenschaften. Der Zweck des ersten Teils dieser Studie ist es daher, drei Wettergeneratoren, namentlich GEM6, ClimGen und LARS-WG, an acht Klimastationen in der Region des Gouvernements Babylon / Irak zu testen. LARS-WG verwendet eine semi-parametrische Verteilung (entwickelte Verteilung), wohingegen GEM6 und ClimGen eine parametrische Verteilung (weniger komplizierte Verteilung) verwenden. Verschiedene statistische Tests wurden ausgewählt, um die beobachteten und synthetischen Wetterdaten für identische Parameter zu vergleichen, zum Beispiel die Niederschlags- und Temperaturverteilung (Nass-und Trockenzeit). Das Ergebnis zeigt, dass LARS-WG die beobachteten Daten für die Region Babylon akkurater abzeichnet, als ClimGen, wobei GEM6 die beobachteten Daten zu verfehlen scheint. Die synthetischen Daten werden für eine erste Simulation des städtischen Run-offs in der Regenzeit sowie der Folgen des Klimawandels für das Design und Re-Design des städtischen Entwässerungssystems in Hilla verwendet. Der stochastische Wettergenerator LARS wird dann verwendet, um Gruppen zukünftiger Wetterdaten unter Verwendung von fünf globalen Klimamodellen (GCM), die das gesamte Spektrum der Unsicherheit am besten abdecken, zu generieren. Diese globalen Klimamodelle werden verwendet, um zukünftige Klimaszenarien der Temperatur und des Niederschlags für die Region Babylon zu konstruieren. Die Ergebnisse zeigen, eine Steigerung der monatlichen Temperaturen und eine Abnahme der Gesamtmenge der Regen, wobei es jedoch extremere Regenereignissen mit höherer Intensivität in kürzerer Zeit geben wird. Veränderungen der Höhe, des Zeitpunkt und der Intensität der Regenereignisse können die Menge des Abflusses von Regenwasser, die kontrolliert werden muss, beeinflussen. Die Klimawandel-Prognosen können bestehende regenwasserbedingte Überschwemmungen verschlimmern. Verschiedene Bezirke in Hilla können stärker von Regenfluten betroffen werden als bisher aufgrund der Prognosen. Alle Ergebnisse, die von den globalen Klimamodellen übernommen wurden, sind in täglicher Auflösung und um das Regenwasser-Management-Modell anzuwenden, ist es wichtig, dass alle Daten in einer Mindestauflösung von einer Stunde vorliegen. Zur Erfüllung dieser Bedingung wurde ein eine Aufschlüsselungs-Modell verwendet. Einige Stunden-Niederschlagsdaten waren erforderlich, um das zeitliche Aufschlüsselungs-Modell zu kalibrieren. Da weder die Klimastationen noch die Regen-Messgeräte im Interessenbereich über stundenauflösende Daten verfügt, wurden die Stundendaten von Flughäfen in Bagdad verwendet. Die Veränderungen in den Hochwasserrückkehrperioden sind in den projizierten Ergebnissen des Klimawandels ersichtlich, und eine Rückkehrperiode wird nur dann über Zeit gültig bleiben, wenn sich die Umweltbedingungen nicht ändern. Dies bedeutet, dass Wiederkehrperioden, die für Planungszwecke verwendet werden, öfter als bisher aktualisiert werden müssen, da die auf Grundlage von Daten der letzten 30 Jahre berechneten Werte innerhalb einer relativ kurzen Zeitspanneunrepräsentativ werden können. Während Wiederkehrperioden bieten nützliche Hinweise für die Planung die Effekte von Überschwemmungen und die damit verbundenen Auswirkungen, müssen aber mit Vorsicht verwendet werden, und Extreme, die öfter eintreten könnten als erwartet, sollten berücksichtigt werden. Im Studienbereich mit getrennten Regenwassersystemen zeigt die Simulation des Regenwasser-Management-Modells, dass sich die Anzahl der Oberflächenhochwasser sowie der Überschwemmungen im Zeitraum 2050e-2080 erhöhen wird. Zukünftige Niederschläge werdensowohl die Hochwasser-Frequenz als auch die Dauer von Überschwemmungen erhöhen. Daher ist die Notwendigkeit offensichtlich, zukünftige Situationen in städtischen Entwässerungssystemen zu berücksichtigen und eine gut geplante Strategie zu haben, um zukünftige Bedingungen zu bewältigen. Die gesamten Auswirkungen auf die Siedlungsentwässerungssyteme aufgrund der Zunahme von intensiven Niederschlagsereignissen müssen angepasst werden. Aus diesem Grund wurden Empfehlungen für die Anpassung an den Klimawandel in der Stadt Hilla vorgeschlagen. Diese wurden durch die Zusammenführung von Informationen aus der Prüfung von fünf Fallstudien, ausgewählt aufgrund der Menge und Qualität der verfügbaren Informationen, erarbeitet,. Die bewerteten Städte sind Seattle (USA), Odense (Dänemark), Teheran (Iran), und Khulna (Bangladesch).:Preface Acknowledgment Abstract Kurzfassung Contents List of Figures List of Tables List of Listing List of Abbreviation Introduction 1.1. Background of The Research 1.2. The Climate Change Challenge 1.3. Urban Water Systems and Climate Change 1.4. Climate Change and Urban Drainage Adaptation Plan 1.5. Objectives of the Research 1.6. Research Problems and Hypothesis 1.7. Dissertation Structure 1.8. Delimitations Climate History and Climate Change Projections in Al Hillah City Chapter One: State of the Art on Climate Change 2.1.1. The Earth’s Climate System 2.1.2. Climate Change 2.1.3. Emission Scenarios 2.1.4. Global Climate Change 2.1.5. Climate Models 2.1.6. Downscaling Chapter Two: Topography and Climate of the Study Area 2.2.1. Location 2.2.2. Topography 2.2.3. Climate Chapter Three: Climate Change - Methodology and Data 2.3.1. Methodology 2.3.1.1. Stochastic Weather Generators 2.3.1.2. Description of Generators Used in the Comparison 2.3.1.3. Statistical Analysis Comparison Test 2.3.2. Data 2.3.2.1. Required data for modelling 2.3.2.2. Historical daily data required for the weather generators 2.3.2.3. Minimum requirements 2.3.2.4. Data Availability Chapter Four: Results Analysis and Evaluation of Climate Change 2.4.1. Weather Generators Comparison Test results 2.4.1.1.The p-value test Temperature Comparison results Precipitation Comparison Results 2.4.2. LARS Weather Generator Future Scenario 2.4.2.1.1. Climate Change Scenarios for the region of Babylon governorate Storm Water System and Urban Flooding in Al Hillah City Chapter one: Urban Water Modelling 3.1.1. General Overview and Background 3.1.1.1. Storm water systems 3.1.2. Urban Runoff Models 3.1.3. An Overview of Runoff Estimation Methods 3.1.3.1. Computer Modelling in Urban Drainage 3.1.3.2.Statistical Rational Method (SRM) 3.1.4. Models Based on Statistical Rational Method 3.1.5. Urban Rainfall-Runoff Methods 3.1.6. Accuracy Level in Urban Catchment Models Chapter Two: Urban Water System in Al Hillah City and Data Requirement for Modelling 3.2.1. History 3.2.2. Current Situation 3.2.2.1. Urban water system Iraq 3.2.2.2. Urban Water description in Babylon governorate 3.2.2.3. Drinking water network 3.2.2.4. Sewerage infrastructure 3.2.3. Required data for modelling Chapter Three: Methodology to Disaggregate Daily Rain Data and Model Storm Water Runoff 3.3.1. Temporal Disaggregation (hourly from daily) 3.3.1.1. Background of Disaggregation 3.3.1.2. Disaggregation techniques 3.3.1.3. DiMoN Disaggregation Tool 3.3.1.4. Input Data 3.3.1.5. Methods Formerly Used 3.3.2. EPA Storm Water Management Model (SWMM) 3.3.2.1. Verification and Calibration 3.3.2.2. Stormwater Management Model PCSWMM 3.3.2.3. Complete support for all USEPA SWMM5 engine capabilities Chapter Four: Urban

    Stress perfusion cardiovascular magnetic resonance and serial fractional flow reserve assessment of the left anterior descending artery in patients undergoing right coronary artery chronic total occlusion revascularization

    Get PDF
    Background: Fractional flow reserve (FFR) assessment of remote arteries, in the context of a bystander chronic total occlusion (CTO), can lead to false positive results. Adenosine stress cardiovascular magnetic resonance (CMR) evaluates perfusion defects across the entire myocardium and may therefore be a reliable tool in the work-up of remote lesions in CTO patients. The IMPACT-CTO study investigated donor artery invasive physiology before, immediately post, and at 4 months following right coronary artery (RCA) CTO percutaneous coronary intervention (PCI). The aim of this subanalysis was to assess the concordance between baseline perfusion CMR and serial FFR evaluation of left anterior descending artery (LAD) ischemia in patients from the IMPACT-CTO study.Methods: Baseline adenosine stress CMR examinations from 26 patients were analyzed for qualitative evidence of LAD ischemia. The results were correlated with the serial LAD FFR measurements.Results: The present findings demonstrated that before RCA CTO PCI, there was 62% agreement between perfusion CMR and FFR (ischemic threshold £ 0.8) in the assessment of LAD ischemia (k = 0.29; fair concordance). At 4 months after revascularization, there was 77% agreement (k = 0.52; moderate concordance) between the index CMR assessment of LAD ischemia and the follow-up LAD FFR. Concordance was improved at a LAD FFR ischemic threshold of £ 0.75.Conclusions: In this hypothesis generating study, baseline CMR assessment of LAD ischemia correlated better with the 4 months LAD FFR data (threshold £ 0.8) as compared to the FFR measurements taken prior to RCA CTO revascularization

    Coronary artery height differences and their effect on fractional flow reserve

    Get PDF
    Background: Fractional flow reserve (FFR) uses pressure-based measurements to assess the severityof a coronary stenosis. Distal pressure (Pd) is often at a different vertical height to that of the proximalaortic pressure (Pa). The difference in pressure between Pd and Pa due to hydrostatic pressure, mayimpact FFR calculation.Methods: One hundred computed tomography coronary angiographies were used to measure heightdifferences between the coronary ostia and points in the coronary tree. Mean heights were used to calculate the hydrostatic pressure effect in each artery, using a correction factor of 0.8 mmHg/cm. Thiswas tested in a simulation of intermediate coronary stenosis to give the “corrected FFR” (cFFR) andpercentage of values, which crossed a threshold of 0.8.Results: The mean height from coronary ostium to distal left anterior descending (LAD) was +5.26 cm,distal circumflex (Cx) –3.35 cm, distal right coronary artery-posterior left ventricular artery (RCA-PLV)–5.74 cm and distal RCA-posterior descending artery (PDA) +1.83 cm. For LAD, correction resulted in a mean change in FFR of +0.042, –0.027 in the Cx, –0.046 in the PLV and +0.015 in the PDA. Using 200 random FFR values between 0.75 and 0.85, the resulting cFFR crossed the clinical treatmentthreshold of 0.8 in 43% of LAD, 27% of Cx, 47% of PLV and 15% of PDA cases.Conclusions: There are significant vertical height differences between the distal artery (Pd) and its point of normalization (Pa). This is likely to have a modest effect on FFR, and correcting for this results in a proportion of values crossing treatment thresholds. Operators should be mindful of this phenomenon when interpreting FFR values

    In-flight angina pectoris; an unusual presentation

    Get PDF
    Background: An unusual case of typical angina which occurred on a long haul flight is presented. This case is notable as this was the index presentation, with no previous symptoms prior to this. Physiological changes at altitude can be marked, and include hypoxia, tachycardia and an increase in cardiac output. These changes were enough to expose underlying angina in our patient. Case presentation: A 68 year old man presented with typical cardiac chest pain on a long haul flight. His symptoms first started 10-15 min after take-off and resolved on landing. This was his index presentation, and there were no similar symptoms in the past. Background history included hypercholesterolaemia and benign prostatic hypertrophy only. He led a rather sedentary lifestyle. A CT coronary angiogram showed significant disease in the proximal left anterior descending artery and proximal right coronary artery. He went on to have a coronary angiogram with invasive physiological measurements, which determined both lesions were physiologically significant. Both arteries were treated with drug eluting stents. Since treatment, he once again embarked on a long haul flight, and was completely asymptomatic. Conclusion: The presentation of symptoms in this individual was rather unusual, but clearly caused by significant coronary artery disease. Potentially his sedentary lifestyle was not enough in day-to-day activities to promote anginal symptoms. When his cardiovascular system was physiologically stressed during flight, brought about by hypoxia, raised sympathetic tone and increased cardiac output, symptoms emerged. In turn, when landing, with atmospheric conditions normalised, physiological stress was removed, and symptoms resolved. Clinically therefore, one should not exclude symptoms that occur with differing physiological states, such as stress and altitude, as they are also potential triggers for myocardial ischaemia, despite absence of day-to-day symptoms

    Impact of point-of-care pre-procedure creatinine and eGFR testing in patients with ST segment elevation myocardial infarction undergoing primary PCI: The pilot STATCREAT study

    Get PDF
    Background: Contrast-induced acute kidney injury (CI-AKI) is a recognised complication during primary PCI that affects short and long term prognosis. The aim of this study was to assess the impact of point-of-care (POC) pre-PPCI creatinine and eGFR testing in STEMI patients. Methods 160 STEMI patients (STATCREAT group) with pre-procedure POC testing of Cr and eGFR were compared with 294 consecutive retrospective STEMI patients (control group). Patients were further divided into subjects with or without pre-existing CKD. Results: The incidence of CI-AKI in the whole population was 14.5% and not different between the two overall groups. For patients with pre-procedure CKD, contrast dose was significantly reduced in the STATCREAT group (124.6 ml vs. 152.3 ml, p = 0.015). The incidence of CI-AKI was 5.9% (n = 2) in the STATCREAT group compared with 17.9% (n = 10) in the control group (p = 0.12). There was no difference in the number of lesions treated (1.118 vs. 1.196, p = 0.643) or stents used (1.176 vs. 1.250, p = 0.78). For non-CKD patients, there was no significant difference in contrast dose (172.4 ml vs. 158.4 ml, p = 0.067), CI-AKI incidence (16.7% vs. 13.4%, p = 0.4), treated lesions (1.167 vs. 1.164, p = 1.0) or stents used (1.214 vs. 1.168, p = 0.611) between the two groups. Conclusions: Pre-PPCI point-of-care renal function testing did not reduce the incidence of CI-AKI in the overall group of STEMI patients. In patients with CKD, contrast dose was significantly reduced, but a numerical reduction in CI-AKI was not found to be statistically significant. No significant differences were found in the non-CKD group

    Impact of Percutaneous Revascularization on Exercise Hemodynamics in Patients With Stable Coronary Disease

    Get PDF
    Background: Recently, the therapeutic benefits of percutaneous coronary intervention (PCI) have been challenged in patients with stable coronary artery disease (SCD). Objectives: The authors examined the impact of PCI on exercise responses in the coronary circulation, the microcirculation, and systemic hemodynamics in patients with SCD. Methods: A total of 21 patients (mean age 60.3 ± 8.4 years) with SCD and single-vessel coronary stenosis underwent cardiac catheterization. Pre-PCI, patients exercised on a supine ergometer until rate-limiting angina or exhaustion. Simultaneous trans-stenotic coronary pressure-flow measurements were made throughout exercise. Post-PCI, this process was repeated. Physiological parameters, rate-limiting symptoms, and exercise performance were compared between pre-PCI and post-PCI exercise cycles. Results: PCI reduced ischemia as documented by fractional flow reserve value (pre-PCI 0.59 ± 0.18 to post-PCI 0.91 ± 0.07), instantaneous wave-free ratio value (pre-PCI 0.61 ± 0.27 to post-PCI 0.96 ± 0.05) and coronary flow reserve value (pre-PCI 1.7 ± 0.7 to post-PCI 3.1 ± 1.0; p < 0.001 for all). PCI increased peak-exercise average peak coronary flow velocity (p < 0.0001), coronary perfusion pressure (distal coronary pressure; p < 0.0001), systolic blood pressure (p = 0.01), accelerating wave energy (p < 0.001), and myocardial workload (rate-pressure product; p < 0.01). These changes observed immediately following PCI resulted from the abolition of stenosis resistance (p < 0.0001). PCI was also associated with an immediate improvement in exercise time (+67 s; 95% confidence interval: 31 to 102 s; p < 0.0001) and a reduction in rate-limiting angina symptoms (81% reduction in rate-limiting angina symptoms post-PCI; p < 0.001). Conclusions: In patients with SCD and severe single-vessel stenosis, objective physiological responses to exercise immediately normalize following PCI. This is seen in the coronary circulation, the microcirculation, and systemic hemodynamics

    Impact of Climate Change on the Storm Water System in Al Hillah City-Iraq

    Get PDF
    The impact of climate change is increasingly important to the design of urban water infrastructure like stormwater systems, sewage systems and drinking water systems. Growing evidence indicates that the water sector will not only be affected by climate change, but it will reflect and deliver many of its impacts through floods, droughts, or extreme rainfall events. Water resources will change in both quantity and quality, and the infrastructure of stormwater and wastewater facilities may face greater risk of damage caused by storms, floods and droughts. The effect of the climate change will put more difficulties on operations to disrupted services and increased cost of the water and wastewater services. Governments, urban planners, and water managers should therefore re-examine development processes for municipal water and wastewater services and are adapt strategies to incorporate climate change into infrastructure design, capital investment projects, service provision planning, and operation and maintenance. According to the Intergovernmental Panel on Climate Change, the global mean temperature has increased by 0,7 °C during the last 100 years and, as a consequence, the hydrological cycle has intensified with, for example, more acute rainfall events. As urban drainage systems have been developed over a long period of time and design criteria are based upon climatic characteristics, these changes will affect the systems and the city accordingly. The overall objective of this thesis is to increase the knowledge about the climate change impacts on the stormwater system in Al Hillah city/Iraq. In more detail, the objective is to investigate how climate change could affect urban drainage systems specifically stormwater infrastructure, and also to suggest an adaptation plan for these changes using adaptation plans examples from international case studies. Three stochastic weather generators have been investigated in order to understand the climate and climate change in Al Hillah. The stochastic weather generators have been used in different kind of researches and studies; for example in hydrology, floods management, urban water design and analysis, and environmental protection. To make such studies efficient, it is important to have long data records (typically daily data) so the weather generator can generate synthetic daily weather data based on a sound statistical background. Some weather generators can produce the climate change scenarios for different kind of global climate models. They can be used also to produce synthetic data for a site that does not have enough data by using interpolation methods. To ensure that the weather generator is fitting the climate of the region properly, it should be tested against observed data, whether the synthetic data are sufficiently similar. At the same time, the accuracy of the weather generator is different from region to region and depends on the respective climate properties. Testing three weather generators GEM6, ClimGen and LARS-WG at eight climate stations in the region of Babylon governorate/Iraq, where Al Hillah is located, is one of the purposes of the first part of this study. LARS-WG uses a semi-parametric distribution (developed distribution), whereas GEM6 and ClimGen use a parametric distribution (less complicated distribution). Different statistical tests have been selected to compare observed and synthetic weather data for the same kind, for instance, the precipitation and temperature distribution (wet and dry season). The result shows that LARS-WG represents the observed data for Babylon region in a better way than ClimGen, whereas GEM6 seems to misfit the observed data. The synthetic data will be used for a first simulation of urban run-off during the wet season and the consequences of climate change for the design and re-design of the urban drainage system in Al Hillah. The stochastic weather generator LARS is then used to generate ensembles of future weather data using five Global Climate Models (GCMs) that best captured the full range of uncertainty. These Global Climate Models are used to construct future climate scenarios of temperature and precipitation over the region of Babylon Governorate in Iraq. The results show an increase in monthly temperatures and a decrease in the total amount of rain, yet the extreme rain events will be more intense in a shorter time. Changes in the amount, timing, and intensity of rain events can affect the amount of stormwater runoff that needs to be controlled. The climate change calculated projections may make existing stormwater-related flooding worse. Different districts in Al Hillah city may face more frequent stormwater floods than before due to the climate change projections. All the results that have been taken from the Global Climate Models are in a daily resolution format and in order to run the Storm Water Management Model it is important to have all data in a minimum of one hour resolution. In order to fulfill this condition a disaggregation model has been used. Some hourly precipitation data were required to calibrate the temporal disaggregation model; however none of the climate stations and rain gauges in the area of interest have hourly resolution data, so the hourly data from Baghdad airport station have been used for that calibration. The changes in the flood return periods have been seen in the projected climate change results, and a return period will only remain valid over time if environmental conditions do not change. This means that return periods used for planning purposes may need to be updated more often than previously, because values calculated based on the past 30 years of data may become unrepresentative within a relatively short time span. While return periods provide useful guidance for planning the effects of flooding and related impacts, they need to be used with care, and allowances have to be made for extremes that may occur more often than may be expected. In the study area with separated stormwater systems, the Storm Water Management Model simulation shows that the number of surface floods as well as of the floods increases in the future time periods 2050s and 2080s. Future precipitation will also increase both the flooding frequency and the duration of floods; therefore the need to handle future situations in urban drainage systems and to have a well-planned strategy to cope with future conditions is evident. The overall impacts on urban drainage systems due to the increase of intensive precipitation events need to be adapted. For that reason, recommendations for climate change adaptation in the city of Al Hillah have been suggested. This has been accomplished by merging information from the review of five study cases, selected based on the amount and quality of information available. The cities reviewed are Seattle (USA), Odense (Denmark), Tehran (Iran), and Khulna (Bangladesh).:Preface Acknowledgment Abstract Kurzfassung Contents List of Figures List of Tables List of Listing List of Abbreviation Introduction 1.1. Background of The Research 1.2. The Climate Change Challenge 1.3. Urban Water Systems and Climate Change 1.4. Climate Change and Urban Drainage Adaptation Plan 1.5. Objectives of the Research 1.6. Research Problems and Hypothesis 1.7. Dissertation Structure 1.8. Delimitations Climate History and Climate Change Projections in Al Hillah City Chapter One: State of the Art on Climate Change 2.1.1. The Earth’s Climate System 2.1.2. Climate Change 2.1.3. Emission Scenarios 2.1.4. Global Climate Change 2.1.5. Climate Models 2.1.6. Downscaling Chapter Two: Topography and Climate of the Study Area 2.2.1. Location 2.2.2. Topography 2.2.3. Climate Chapter Three: Climate Change - Methodology and Data 2.3.1. Methodology 2.3.1.1. Stochastic Weather Generators 2.3.1.2. Description of Generators Used in the Comparison 2.3.1.3. Statistical Analysis Comparison Test 2.3.2. Data 2.3.2.1. Required data for modelling 2.3.2.2. Historical daily data required for the weather generators 2.3.2.3. Minimum requirements 2.3.2.4. Data Availability Chapter Four: Results Analysis and Evaluation of Climate Change 2.4.1. Weather Generators Comparison Test results 2.4.1.1.The p-value test Temperature Comparison results Precipitation Comparison Results 2.4.2. LARS Weather Generator Future Scenario 2.4.2.1.1. Climate Change Scenarios for the region of Babylon governorate Storm Water System and Urban Flooding in Al Hillah City Chapter one: Urban Water Modelling 3.1.1. General Overview and Background 3.1.1.1. Storm water systems 3.1.2. Urban Runoff Models 3.1.3. An Overview of Runoff Estimation Methods 3.1.3.1. Computer Modelling in Urban Drainage 3.1.3.2.Statistical Rational Method (SRM) 3.1.4. Models Based on Statistical Rational Method 3.1.5. Urban Rainfall-Runoff Methods 3.1.6. Accuracy Level in Urban Catchment Models Chapter Two: Urban Water System in Al Hillah City and Data Requirement for Modelling 3.2.1. History 3.2.2. Current Situation 3.2.2.1. Urban water system Iraq 3.2.2.2. Urban Water description in Babylon governorate 3.2.2.3. Drinking water network 3.2.2.4. Sewerage infrastructure 3.2.3. Required data for modelling Chapter Three: Methodology to Disaggregate Daily Rain Data and Model Storm Water Runoff 3.3.1. Temporal Disaggregation (hourly from daily) 3.3.1.1. Background of Disaggregation 3.3.1.2. Disaggregation techniques 3.3.1.3. DiMoN Disaggregation Tool 3.3.1.4. Input Data 3.3.1.5. Methods Formerly Used 3.3.2. EPA Storm Water Management Model (SWMM) 3.3.2.1. Verification and Calibration 3.3.2.2. Stormwater Management Model PCSWMM 3.3.2.3. Complete support for all USEPA SWMM5 engine capabilities Chapter Four: Urban Flooding Results 3.4.1. Disaggregation of the daily rain data to hourly data 3.4.1.1.The 1 hour events properties 3.4.1.2. Estimating the rain events in each climate change scenario 3.4.1.3. Past, Current and future return periods 3.4.2. Storm Water Management Model PCSWMM Calibration 3.4.3.Return periods and Urban Floods 3.4.3.1.Network simulation 3.4.3.2.Properties with previous flooding problems 3.4.3.3.Storm water system simulation under 1 hour-2, 5 and 10 years return period 3.4.3.4.Storm water system simulation under 1 hour-25 years return period 3.4.3.5.Storm water system simulation under 1 hour-50 years return period 3.4.3.6. Storm water system simulation under 1 hour – 100, 200, 500 and 1000 years return period 3.4.3.7.Total Flooding Adaptation Plan for Al Hillah City Chapter One: International Case Studies 4.1.1. Historical precipitation analysis 4.1.2. Current and projected future climate change, impacts and adaptation plan for each selected city 4.1.2.1. Seattle 4.1.2.2. Odense 4.1.2.3. Tehran 4.1.2.4. Khulna 4.1.2.5. Melbourne 4.1.3. Drainage System of the Studied Cities 4.1.3.1. Drainage System in Seattle 4.1.3.2. Drainage System in Odense 4.1.3.3. Drainage System in Tehran 4.1.3.4. Drainage System in Khulna 4.1.3.5. Drainage System in Melbourne Chapter Two: Adaptation Plan for Al Hillah City 4.2.1. Conclusions from Adaptation Options Analysed 4.2.2. Suggestions for Al Hillah City 4.2.3. Adaptation Actions Overall Conclusion BibliographyDie Auswirkungen des Klimawandels auf die Gestaltung der städtischen Wasserinfrastruktur wie Regenwasser, Kanalisation und Trinkwassersysteme werden immer wichtiger. Eine wachsende Anzahl von Belegen zeigt, dass der Wassersektor nicht nur durch den Klimawandel beeinflusst werden wird, aber er wird zu reflektieren und liefern viele seiner Auswirkungen durch Überschwemmungen, Dürren oder extreme Niederschlagsereignisse. Die Wasserressourcen werden sich in Quantität und Qualität verändern, und die Infrastruktur von Regen-und Abwasseranlagen kann einer größeren Gefahr von Schäden durch Stürme, Überschwemmungen und Dürren ausgesetzt sein. Die Auswirkungen des Klimawandels werden zu mehr Schwierigkeiten im Betrieb gestörter Dienstleistungen und zu erhöhten Kosten für Wasser-und Abwasserdienstleistungen führen. Regierungen, Stadtplaner, und Wasser-Manager sollten daher die Entwicklungsprozesse für kommunale Wasser-und Abwasserdienstleistungen erneut überprüfen und Strategien anpassen, um den Klimawandel in Infrastruktur-Design, Investitionsprojekte, Planung von Leistungserbringung, sowie Betrieb und Wartung einzuarbeiten. Nach Angaben des Intergovernmental Panel on Climate Change hat die globale Mitteltemperatur in den letzten 100 Jahren um 0,7 °C zugenommen, und in der Folge hat sich der hydrologische Zyklus intensiviert mit, zum Beispiel, stärkeren Niederschlagsereignisse. Da die städtischen Entwässerungssysteme über einen langen Zeitraum entwickelt wurden und Design-Kriterien auf klimatischen Eigenschaften beruhen, werden diese Veränderungen die Systeme und die Stadt entsprechend beeinflussen. Das übergeordnete Ziel dieser Arbeit ist es, das Wissen über die Auswirkungen des Klimawandels auf das Regenwasser-System in der Stadt Hilla / Irak zu bereichern. Im Detail ist das Ziel, zu untersuchen, wie der Klimawandel die Siedlungsentwässerung und insbesondere die Regenwasser-Infrastruktur betreffen könnte. Desweiteren soll ein Anpassungsplan für diese Änderungen auf der Grundlage von beispielhaften Anpassungsplänen aus internationalen Fallstudienvorgeschlagen werden. Drei stochastische Wettergeneratoren wurden untersucht, um das Klima und den Klimawandel in Hilla zu verstehen. Stochastische Wettergeneratoren wurden in verschiedenen Untersuchungen und Studien zum Beispiel in der Hydrologie sowie im Hochwasser-Management, Siedlungswasser-Design- und Analyse, und Umweltschutz eingesetzt. Damit solche Studien effizient sind, ist es wichtig, lange Datensätze (in der Regel Tageswerte) haben, so dass der Wettergenerator synthetische tägliche Wetterdaten erzeugen kann, dieauf einem soliden statistischen Hintergrund basieren. Einige Wettergeneratoren können Klimaszenarien für verschiedene Arten von globalen Klimamodellen erzeugen. Sie können unter Verwendung von Interpolationsverfahren auch synthetische Daten für einen Standort generieren, für den nicht genügend Daten vorliegen. Um sicherzustellen, dass der Wettergenerator dem Klima der Region optimal entspricht, sollte gegen die beobachteten Daten geprüft werden, ob die synthetischen Daten ausreichend ähnlich sind. Gleichzeitig unterscheidet sich die Genauigkeit des Wettergenerator von Region zu Region und abhängig von den jeweiligen Klimaeigenschaften. Der Zweck des ersten Teils dieser Studie ist es daher, drei Wettergeneratoren, namentlich GEM6, ClimGen und LARS-WG, an acht Klimastationen in der Region des Gouvernements Babylon / Irak zu testen. LARS-WG verwendet eine semi-parametrische Verteilung (entwickelte Verteilung), wohingegen GEM6 und ClimGen eine parametrische Verteilung (weniger komplizierte Verteilung) verwenden. Verschiedene statistische Tests wurden ausgewählt, um die beobachteten und synthetischen Wetterdaten für identische Parameter zu vergleichen, zum Beispiel die Niederschlags- und Temperaturverteilung (Nass-und Trockenzeit). Das Ergebnis zeigt, dass LARS-WG die beobachteten Daten für die Region Babylon akkurater abzeichnet, als ClimGen, wobei GEM6 die beobachteten Daten zu verfehlen scheint. Die synthetischen Daten werden für eine erste Simulation des städtischen Run-offs in der Regenzeit sowie der Folgen des Klimawandels für das Design und Re-Design des städtischen Entwässerungssystems in Hilla verwendet. Der stochastische Wettergenerator LARS wird dann verwendet, um Gruppen zukünftiger Wetterdaten unter Verwendung von fünf globalen Klimamodellen (GCM), die das gesamte Spektrum der Unsicherheit am besten abdecken, zu generieren. Diese globalen Klimamodelle werden verwendet, um zukünftige Klimaszenarien der Temperatur und des Niederschlags für die Region Babylon zu konstruieren. Die Ergebnisse zeigen, eine Steigerung der monatlichen Temperaturen und eine Abnahme der Gesamtmenge der Regen, wobei es jedoch extremere Regenereignissen mit höherer Intensivität in kürzerer Zeit geben wird. Veränderungen der Höhe, des Zeitpunkt und der Intensität der Regenereignisse können die Menge des Abflusses von Regenwasser, die kontrolliert werden muss, beeinflussen. Die Klimawandel-Prognosen können bestehende regenwasserbedingte Überschwemmungen verschlimmern. Verschiedene Bezirke in Hilla können stärker von Regenfluten betroffen werden als bisher aufgrund der Prognosen. Alle Ergebnisse, die von den globalen Klimamodellen übernommen wurden, sind in täglicher Auflösung und um das Regenwasser-Management-Modell anzuwenden, ist es wichtig, dass alle Daten in einer Mindestauflösung von einer Stunde vorliegen. Zur Erfüllung dieser Bedingung wurde ein eine Aufschlüsselungs-Modell verwendet. Einige Stunden-Niederschlagsdaten waren erforderlich, um das zeitliche Aufschlüsselungs-Modell zu kalibrieren. Da weder die Klimastationen noch die Regen-Messgeräte im Interessenbereich über stundenauflösende Daten verfügt, wurden die Stundendaten von Flughäfen in Bagdad verwendet. Die Veränderungen in den Hochwasserrückkehrperioden sind in den projizierten Ergebnissen des Klimawandels ersichtlich, und eine Rückkehrperiode wird nur dann über Zeit gültig bleiben, wenn sich die Umweltbedingungen nicht ändern. Dies bedeutet, dass Wiederkehrperioden, die für Planungszwecke verwendet werden, öfter als bisher aktualisiert werden müssen, da die auf Grundlage von Daten der letzten 30 Jahre berechneten Werte innerhalb einer relativ kurzen Zeitspanneunrepräsentativ werden können. Während Wiederkehrperioden bieten nützliche Hinweise für die Planung die Effekte von Überschwemmungen und die damit verbundenen Auswirkungen, müssen aber mit Vorsicht verwendet werden, und Extreme, die öfter eintreten könnten als erwartet, sollten berücksichtigt werden. Im Studienbereich mit getrennten Regenwassersystemen zeigt die Simulation des Regenwasser-Management-Modells, dass sich die Anzahl der Oberflächenhochwasser sowie der Überschwemmungen im Zeitraum 2050e-2080 erhöhen wird. Zukünftige Niederschläge werdensowohl die Hochwasser-Frequenz als auch die Dauer von Überschwemmungen erhöhen. Daher ist die Notwendigkeit offensichtlich, zukünftige Situationen in städtischen Entwässerungssystemen zu berücksichtigen und eine gut geplante Strategie zu haben, um zukünftige Bedingungen zu bewältigen. Die gesamten Auswirkungen auf die Siedlungsentwässerungssyteme aufgrund der Zunahme von intensiven Niederschlagsereignissen müssen angepasst werden. Aus diesem Grund wurden Empfehlungen für die Anpassung an den Klimawandel in der Stadt Hilla vorgeschlagen. Diese wurden durch die Zusammenführung von Informationen aus der Prüfung von fünf Fallstudien, ausgewählt aufgrund der Menge und Qualität der verfügbaren Informationen, erarbeitet,. Die bewerteten Städte sind Seattle (USA), Odense (Dänemark), Teheran (Iran), und Khulna (Bangladesch).:Preface Acknowledgment Abstract Kurzfassung Contents List of Figures List of Tables List of Listing List of Abbreviation Introduction 1.1. Background of The Research 1.2. The Climate Change Challenge 1.3. Urban Water Systems and Climate Change 1.4. Climate Change and Urban Drainage Adaptation Plan 1.5. Objectives of the Research 1.6. Research Problems and Hypothesis 1.7. Dissertation Structure 1.8. Delimitations Climate History and Climate Change Projections in Al Hillah City Chapter One: State of the Art on Climate Change 2.1.1. The Earth’s Climate System 2.1.2. Climate Change 2.1.3. Emission Scenarios 2.1.4. Global Climate Change 2.1.5. Climate Models 2.1.6. Downscaling Chapter Two: Topography and Climate of the Study Area 2.2.1. Location 2.2.2. Topography 2.2.3. Climate Chapter Three: Climate Change - Methodology and Data 2.3.1. Methodology 2.3.1.1. Stochastic Weather Generators 2.3.1.2. Description of Generators Used in the Comparison 2.3.1.3. Statistical Analysis Comparison Test 2.3.2. Data 2.3.2.1. Required data for modelling 2.3.2.2. Historical daily data required for the weather generators 2.3.2.3. Minimum requirements 2.3.2.4. Data Availability Chapter Four: Results Analysis and Evaluation of Climate Change 2.4.1. Weather Generators Comparison Test results 2.4.1.1.The p-value test Temperature Comparison results Precipitation Comparison Results 2.4.2. LARS Weather Generator Future Scenario 2.4.2.1.1. Climate Change Scenarios for the region of Babylon governorate Storm Water System and Urban Flooding in Al Hillah City Chapter one: Urban Water Modelling 3.1.1. General Overview and Background 3.1.1.1. Storm water systems 3.1.2. Urban Runoff Models 3.1.3. An Overview of Runoff Estimation Methods 3.1.3.1. Computer Modelling in Urban Drainage 3.1.3.2.Statistical Rational Method (SRM) 3.1.4. Models Based on Statistical Rational Method 3.1.5. Urban Rainfall-Runoff Methods 3.1.6. Accuracy Level in Urban Catchment Models Chapter Two: Urban Water System in Al Hillah City and Data Requirement for Modelling 3.2.1. History 3.2.2. Current Situation 3.2.2.1. Urban water system Iraq 3.2.2.2. Urban Water description in Babylon governorate 3.2.2.3. Drinking water network 3.2.2.4. Sewerage infrastructure 3.2.3. Required data for modelling Chapter Three: Methodology to Disaggregate Daily Rain Data and Model Storm Water Runoff 3.3.1. Temporal Disaggregation (hourly from daily) 3.3.1.1. Background of Disaggregation 3.3.1.2. Disaggregation techniques 3.3.1.3. DiMoN Disaggregation Tool 3.3.1.4. Input Data 3.3.1.5. Methods Formerly Used 3.3.2. EPA Storm Water Management Model (SWMM) 3.3.2.1. Verification and Calibration 3.3.2.2. Stormwater Management Model PCSWMM 3.3.2.3. Complete support for all USEPA SWMM5 engine capabilities Chapter Four: Urban

    Impact of Climate Change on the Storm Water System in Al Hillah City-Iraq

    Full text link
    The impact of climate change is increasingly important to the design of urban water infrastructure like stormwater systems, sewage systems and drinking water systems. Growing evidence indicates that the water sector will not only be affected by climate change, but it will reflect and deliver many of its impacts through floods, droughts, or extreme rainfall events. Water resources will change in both quantity and quality, and the infrastructure of stormwater and wastewater facilities may face greater risk of damage caused by storms, floods and droughts. The effect of the climate change will put more difficulties on operations to disrupted services and increased cost of the water and wastewater services. Governments, urban planners, and water managers should therefore re-examine development processes for municipal water and wastewater services and are adapt strategies to incorporate climate change into infrastructure design, capital investment projects, service provision planning, and operation and maintenance. According to the Intergovernmental Panel on Climate Change, the global mean temperature has increased by 0,7 °C during the last 100 years and, as a consequence, the hydrological cycle has intensified with, for example, more acute rainfall events. As urban drainage systems have been developed over a long period of time and design criteria are based upon climatic characteristics, these changes will affect the systems and the city accordingly. The overall objective of this thesis is to increase the knowledge about the climate change impacts on the stormwater system in Al Hillah city/Iraq. In more detail, the objective is to investigate how climate change could affect urban drainage systems specifically stormwater infrastructure, and also to suggest an adaptation plan for these changes using adaptation plans examples from international case studies. Three stochastic weather generators have been investigated in order to understand the climate and climate change in Al Hillah. The stochastic weather generators have been used in different kind of researches and studies; for example in hydrology, floods management, urban water design and analysis, and environmental protection. To make such studies efficient, it is important to have long data records (typically daily data) so the weather generator can generate synthetic daily weather data based on a sound statistical background. Some weather generators can produce the climate change scenarios for different kind of global climate models. They can be used also to produce synthetic data for a site that does not have enough data by using interpolation methods. To ensure that the weather generator is fitting the climate of the region properly, it should be tested against observed data, whether the synthetic data are sufficiently similar. At the same time, the accuracy of the weather generator is different from region to region and depends on the respective climate properties. Testing three weather generators GEM6, ClimGen and LARS-WG at eight climate stations in the region of Babylon governorate/Iraq, where Al Hillah is located, is one of the purposes of the first part of this study. LARS-WG uses a semi-parametric distribution (developed distribution), whereas GEM6 and ClimGen use a parametric distribution (less complicated distribution). Different statistical tests have been selected to compare observed and synthetic weather data for the same kind, for instance, the precipitation and temperature distribution (wet and dry season). The result shows that LARS-WG represents the observed data for Babylon region in a better way than ClimGen, whereas GEM6 seems to misfit the observed data. The synthetic data will be used for a first simulation of urban run-off during the wet season and the consequences of climate change for the design and re-design of the urban drainage system in Al Hillah. The stochastic weather generator LARS is then used to generate ensembles of future weather data using five Global Climate Models (GCMs) that best captured the full range of uncertainty. These Global Climate Models are used to construct future climate scenarios of temperature and precipitation over the region of Babylon Governorate in Iraq. The results show an increase in monthly temperatures and a decrease in the total amount of rain, yet the extreme rain events will be more intense in a shorter time. Changes in the amount, timing, and intensity of rain events can affect the amount of stormwater runoff that needs to be controlled. The climate change calculated projections may make existing stormwater-related flooding worse. Different districts in Al Hillah city may face more frequent stormwater floods than before due to the climate change projections. All the results that have been taken from the Global Climate Models are in a daily resolution format and in order to run the Storm Water Management Model it is important to have all data in a minimum of one hour resolution. In order to fulfill this condition a disaggregation model has been used. Some hourly precipitation data were required to calibrate the temporal disaggregation model; however none of the climate stations and rain gauges in the area of interest have hourly resolution data, so the hourly data from Baghdad airport station have been used for that calibration. The changes in the flood return periods have been seen in the projected climate change results, and a return period will only remain valid over time if environmental conditions do not change. This means that return periods used for planning purposes may need to be updated more often than previously, because values calculated based on the past 30 years of data may become unrepresentative within a relatively short time span. While return periods provide useful guidance for planning the effects of flooding and related impacts, they need to be used with care, and allowances have to be made for extremes that may occur more often than may be expected. In the study area with separated stormwater systems, the Storm Water Management Model simulation shows that the number of surface floods as well as of the floods increases in the future time periods 2050s and 2080s. Future precipitation will also increase both the flooding frequency and the duration of floods; therefore the need to handle future situations in urban drainage systems and to have a well-planned strategy to cope with future conditions is evident. The overall impacts on urban drainage systems due to the increase of intensive precipitation events need to be adapted. For that reason, recommendations for climate change adaptation in the city of Al Hillah have been suggested. This has been accomplished by merging information from the review of five study cases, selected based on the amount and quality of information available. The cities reviewed are Seattle (USA), Odense (Denmark), Tehran (Iran), and Khulna (Bangladesh).:Preface Acknowledgment Abstract Kurzfassung Contents List of Figures List of Tables List of Listing List of Abbreviation Introduction 1.1. Background of The Research 1.2. The Climate Change Challenge 1.3. Urban Water Systems and Climate Change 1.4. Climate Change and Urban Drainage Adaptation Plan 1.5. Objectives of the Research 1.6. Research Problems and Hypothesis 1.7. Dissertation Structure 1.8. Delimitations Climate History and Climate Change Projections in Al Hillah City Chapter One: State of the Art on Climate Change 2.1.1. The Earth’s Climate System 2.1.2. Climate Change 2.1.3. Emission Scenarios 2.1.4. Global Climate Change 2.1.5. Climate Models 2.1.6. Downscaling Chapter Two: Topography and Climate of the Study Area 2.2.1. Location 2.2.2. Topography 2.2.3. Climate Chapter Three: Climate Change - Methodology and Data 2.3.1. Methodology 2.3.1.1. Stochastic Weather Generators 2.3.1.2. Description of Generators Used in the Comparison 2.3.1.3. Statistical Analysis Comparison Test 2.3.2. Data 2.3.2.1. Required data for modelling 2.3.2.2. Historical daily data required for the weather generators 2.3.2.3. Minimum requirements 2.3.2.4. Data Availability Chapter Four: Results Analysis and Evaluation of Climate Change 2.4.1. Weather Generators Comparison Test results 2.4.1.1.The p-value test Temperature Comparison results Precipitation Comparison Results 2.4.2. LARS Weather Generator Future Scenario 2.4.2.1.1. Climate Change Scenarios for the region of Babylon governorate Storm Water System and Urban Flooding in Al Hillah City Chapter one: Urban Water Modelling 3.1.1. General Overview and Background 3.1.1.1. Storm water systems 3.1.2. Urban Runoff Models 3.1.3. An Overview of Runoff Estimation Methods 3.1.3.1. Computer Modelling in Urban Drainage 3.1.3.2.Statistical Rational Method (SRM) 3.1.4. Models Based on Statistical Rational Method 3.1.5. Urban Rainfall-Runoff Methods 3.1.6. Accuracy Level in Urban Catchment Models Chapter Two: Urban Water System in Al Hillah City and Data Requirement for Modelling 3.2.1. History 3.2.2. Current Situation 3.2.2.1. Urban water system Iraq 3.2.2.2. Urban Water description in Babylon governorate 3.2.2.3. Drinking water network 3.2.2.4. Sewerage infrastructure 3.2.3. Required data for modelling Chapter Three: Methodology to Disaggregate Daily Rain Data and Model Storm Water Runoff 3.3.1. Temporal Disaggregation (hourly from daily) 3.3.1.1. Background of Disaggregation 3.3.1.2. Disaggregation techniques 3.3.1.3. DiMoN Disaggregation Tool 3.3.1.4. Input Data 3.3.1.5. Methods Formerly Used 3.3.2. EPA Storm Water Management Model (SWMM) 3.3.2.1. Verification and Calibration 3.3.2.2. Stormwater Management Model PCSWMM 3.3.2.3. Complete support for all USEPA SWMM5 engine capabilities Chapter Four: Urban Flooding Results 3.4.1. Disaggregation of the daily rain data to hourly data 3.4.1.1.The 1 hour events properties 3.4.1.2. Estimating the rain events in each climate change scenario 3.4.1.3. Past, Current and future return periods 3.4.2. Storm Water Management Model PCSWMM Calibration 3.4.3.Return periods and Urban Floods 3.4.3.1.Network simulation 3.4.3.2.Properties with previous flooding problems 3.4.3.3.Storm water system simulation under 1 hour-2, 5 and 10 years return period 3.4.3.4.Storm water system simulation under 1 hour-25 years return period 3.4.3.5.Storm water system simulation under 1 hour-50 years return period 3.4.3.6. Storm water system simulation under 1 hour – 100, 200, 500 and 1000 years return period 3.4.3.7.Total Flooding Adaptation Plan for Al Hillah City Chapter One: International Case Studies 4.1.1. Historical precipitation analysis 4.1.2. Current and projected future climate change, impacts and adaptation plan for each selected city 4.1.2.1. Seattle 4.1.2.2. Odense 4.1.2.3. Tehran 4.1.2.4. Khulna 4.1.2.5. Melbourne 4.1.3. Drainage System of the Studied Cities 4.1.3.1. Drainage System in Seattle 4.1.3.2. Drainage System in Odense 4.1.3.3. Drainage System in Tehran 4.1.3.4. Drainage System in Khulna 4.1.3.5. Drainage System in Melbourne Chapter Two: Adaptation Plan for Al Hillah City 4.2.1. Conclusions from Adaptation Options Analysed 4.2.2. Suggestions for Al Hillah City 4.2.3. Adaptation Actions Overall Conclusion BibliographyDie Auswirkungen des Klimawandels auf die Gestaltung der städtischen Wasserinfrastruktur wie Regenwasser, Kanalisation und Trinkwassersysteme werden immer wichtiger. Eine wachsende Anzahl von Belegen zeigt, dass der Wassersektor nicht nur durch den Klimawandel beeinflusst werden wird, aber er wird zu reflektieren und liefern viele seiner Auswirkungen durch Überschwemmungen, Dürren oder extreme Niederschlagsereignisse. Die Wasserressourcen werden sich in Quantität und Qualität verändern, und die Infrastruktur von Regen-und Abwasseranlagen kann einer größeren Gefahr von Schäden durch Stürme, Überschwemmungen und Dürren ausgesetzt sein. Die Auswirkungen des Klimawandels werden zu mehr Schwierigkeiten im Betrieb gestörter Dienstleistungen und zu erhöhten Kosten für Wasser-und Abwasserdienstleistungen führen. Regierungen, Stadtplaner, und Wasser-Manager sollten daher die Entwicklungsprozesse für kommunale Wasser-und Abwasserdienstleistungen erneut überprüfen und Strategien anpassen, um den Klimawandel in Infrastruktur-Design, Investitionsprojekte, Planung von Leistungserbringung, sowie Betrieb und Wartung einzuarbeiten. Nach Angaben des Intergovernmental Panel on Climate Change hat die globale Mitteltemperatur in den letzten 100 Jahren um 0,7 °C zugenommen, und in der Folge hat sich der hydrologische Zyklus intensiviert mit, zum Beispiel, stärkeren Niederschlagsereignisse. Da die städtischen Entwässerungssysteme über einen langen Zeitraum entwickelt wurden und Design-Kriterien auf klimatischen Eigenschaften beruhen, werden diese Veränderungen die Systeme und die Stadt entsprechend beeinflussen. Das übergeordnete Ziel dieser Arbeit ist es, das Wissen über die Auswirkungen des Klimawandels auf das Regenwasser-System in der Stadt Hilla / Irak zu bereichern. Im Detail ist das Ziel, zu untersuchen, wie der Klimawandel die Siedlungsentwässerung und insbesondere die Regenwasser-Infrastruktur betreffen könnte. Desweiteren soll ein Anpassungsplan für diese Änderungen auf der Grundlage von beispielhaften Anpassungsplänen aus internationalen Fallstudienvorgeschlagen werden. Drei stochastische Wettergeneratoren wurden untersucht, um das Klima und den Klimawandel in Hilla zu verstehen. Stochastische Wettergeneratoren wurden in verschiedenen Untersuchungen und Studien zum Beispiel in der Hydrologie sowie im Hochwasser-Management, Siedlungswasser-Design- und Analyse, und Umweltschutz eingesetzt. Damit solche Studien effizient sind, ist es wichtig, lange Datensätze (in der Regel Tageswerte) haben, so dass der Wettergenerator synthetische tägliche Wetterdaten erzeugen kann, dieauf einem soliden statistischen Hintergrund basieren. Einige Wettergeneratoren können Klimaszenarien für verschiedene Arten von globalen Klimamodellen erzeugen. Sie können unter Verwendung von Interpolationsverfahren auch synthetische Daten für einen Standort generieren, für den nicht genügend Daten vorliegen. Um sicherzustellen, dass der Wettergenerator dem Klima der Region optimal entspricht, sollte gegen die beobachteten Daten geprüft werden, ob die synthetischen Daten ausreichend ähnlich sind. Gleichzeitig unterscheidet sich die Genauigkeit des Wettergenerator von Region zu Region und abhängig von den jeweiligen Klimaeigenschaften. Der Zweck des ersten Teils dieser Studie ist es daher, drei Wettergeneratoren, namentlich GEM6, ClimGen und LARS-WG, an acht Klimastationen in der Region des Gouvernements Babylon / Irak zu testen. LARS-WG verwendet eine semi-parametrische Verteilung (entwickelte Verteilung), wohingegen GEM6 und ClimGen eine parametrische Verteilung (weniger komplizierte Verteilung) verwenden. Verschiedene statistische Tests wurden ausgewählt, um die beobachteten und synthetischen Wetterdaten für identische Parameter zu vergleichen, zum Beispiel die Niederschlags- und Temperaturverteilung (Nass-und Trockenzeit). Das Ergebnis zeigt, dass LARS-WG die beobachteten Daten für die Region Babylon akkurater abzeichnet, als ClimGen, wobei GEM6 die beobachteten Daten zu verfehlen scheint. Die synthetischen Daten werden für eine erste Simulation des städtischen Run-offs in der Regenzeit sowie der Folgen des Klimawandels für das Design und Re-Design des städtischen Entwässerungssystems in Hilla verwendet. Der stochastische Wettergenerator LARS wird dann verwendet, um Gruppen zukünftiger Wetterdaten unter Verwendung von fünf globalen Klimamodellen (GCM), die das gesamte Spektrum der Unsicherheit am besten abdecken, zu generieren. Diese globalen Klimamodelle werden verwendet, um zukünftige Klimaszenarien der Temperatur und des Niederschlags für die Region Babylon zu konstruieren. Die Ergebnisse zeigen, eine Steigerung der monatlichen Temperaturen und eine Abnahme der Gesamtmenge der Regen, wobei es jedoch extremere Regenereignissen mit höherer Intensivität in kürzerer Zeit geben wird. Veränderungen der Höhe, des Zeitpunkt und der Intensität der Regenereignisse können die Menge des Abflusses von Regenwasser, die kontrolliert werden muss, beeinflussen. Die Klimawandel-Prognosen können bestehende regenwasserbedingte Überschwemmungen verschlimmern. Verschiedene Bezirke in Hilla können stärker von Regenfluten betroffen werden als bisher aufgrund der Prognosen. Alle Ergebnisse, die von den globalen Klimamodellen übernommen wurden, sind in täglicher Auflösung und um das Regenwasser-Management-Modell anzuwenden, ist es wichtig, dass alle Daten in einer Mindestauflösung von einer Stunde vorliegen. Zur Erfüllung dieser Bedingung wurde ein eine Aufschlüsselungs-Modell verwendet. Einige Stunden-Niederschlagsdaten waren erforderlich, um das zeitliche Aufschlüsselungs-Modell zu kalibrieren. Da weder die Klimastationen noch die Regen-Messgeräte im Interessenbereich über stundenauflösende Daten verfügt, wurden die Stundendaten von Flughäfen in Bagdad verwendet. Die Veränderungen in den Hochwasserrückkehrperioden sind in den projizierten Ergebnissen des Klimawandels ersichtlich, und eine Rückkehrperiode wird nur dann über Zeit gültig bleiben, wenn sich die Umweltbedingungen nicht ändern. Dies bedeutet, dass Wiederkehrperioden, die für Planungszwecke verwendet werden, öfter als bisher aktualisiert werden müssen, da die auf Grundlage von Daten der letzten 30 Jahre berechneten Werte innerhalb einer relativ kurzen Zeitspanneunrepräsentativ werden können. Während Wiederkehrperioden bieten nützliche Hinweise für die Planung die Effekte von Überschwemmungen und die damit verbundenen Auswirkungen, müssen aber mit Vorsicht verwendet werden, und Extreme, die öfter eintreten könnten als erwartet, sollten berücksichtigt werden. Im Studienbereich mit getrennten Regenwassersystemen zeigt die Simulation des Regenwasser-Management-Modells, dass sich die Anzahl der Oberflächenhochwasser sowie der Überschwemmungen im Zeitraum 2050e-2080 erhöhen wird. Zukünftige Niederschläge werdensowohl die Hochwasser-Frequenz als auch die Dauer von Überschwemmungen erhöhen. Daher ist die Notwendigkeit offensichtlich, zukünftige Situationen in städtischen Entwässerungssystemen zu berücksichtigen und eine gut geplante Strategie zu haben, um zukünftige Bedingungen zu bewältigen. Die gesamten Auswirkungen auf die Siedlungsentwässerungssyteme aufgrund der Zunahme von intensiven Niederschlagsereignissen müssen angepasst werden. Aus diesem Grund wurden Empfehlungen für die Anpassung an den Klimawandel in der Stadt Hilla vorgeschlagen. Diese wurden durch die Zusammenführung von Informationen aus der Prüfung von fünf Fallstudien, ausgewählt aufgrund der Menge und Qualität der verfügbaren Informationen, erarbeitet,. Die bewerteten Städte sind Seattle (USA), Odense (Dänemark), Teheran (Iran), und Khulna (Bangladesch).:Preface Acknowledgment Abstract Kurzfassung Contents List of Figures List of Tables List of Listing List of Abbreviation Introduction 1.1. Background of The Research 1.2. The Climate Change Challenge 1.3. Urban Water Systems and Climate Change 1.4. Climate Change and Urban Drainage Adaptation Plan 1.5. Objectives of the Research 1.6. Research Problems and Hypothesis 1.7. Dissertation Structure 1.8. Delimitations Climate History and Climate Change Projections in Al Hillah City Chapter One: State of the Art on Climate Change 2.1.1. The Earth’s Climate System 2.1.2. Climate Change 2.1.3. Emission Scenarios 2.1.4. Global Climate Change 2.1.5. Climate Models 2.1.6. Downscaling Chapter Two: Topography and Climate of the Study Area 2.2.1. Location 2.2.2. Topography 2.2.3. Climate Chapter Three: Climate Change - Methodology and Data 2.3.1. Methodology 2.3.1.1. Stochastic Weather Generators 2.3.1.2. Description of Generators Used in the Comparison 2.3.1.3. Statistical Analysis Comparison Test 2.3.2. Data 2.3.2.1. Required data for modelling 2.3.2.2. Historical daily data required for the weather generators 2.3.2.3. Minimum requirements 2.3.2.4. Data Availability Chapter Four: Results Analysis and Evaluation of Climate Change 2.4.1. Weather Generators Comparison Test results 2.4.1.1.The p-value test Temperature Comparison results Precipitation Comparison Results 2.4.2. LARS Weather Generator Future Scenario 2.4.2.1.1. Climate Change Scenarios for the region of Babylon governorate Storm Water System and Urban Flooding in Al Hillah City Chapter one: Urban Water Modelling 3.1.1. General Overview and Background 3.1.1.1. Storm water systems 3.1.2. Urban Runoff Models 3.1.3. An Overview of Runoff Estimation Methods 3.1.3.1. Computer Modelling in Urban Drainage 3.1.3.2.Statistical Rational Method (SRM) 3.1.4. Models Based on Statistical Rational Method 3.1.5. Urban Rainfall-Runoff Methods 3.1.6. Accuracy Level in Urban Catchment Models Chapter Two: Urban Water System in Al Hillah City and Data Requirement for Modelling 3.2.1. History 3.2.2. Current Situation 3.2.2.1. Urban water system Iraq 3.2.2.2. Urban Water description in Babylon governorate 3.2.2.3. Drinking water network 3.2.2.4. Sewerage infrastructure 3.2.3. Required data for modelling Chapter Three: Methodology to Disaggregate Daily Rain Data and Model Storm Water Runoff 3.3.1. Temporal Disaggregation (hourly from daily) 3.3.1.1. Background of Disaggregation 3.3.1.2. Disaggregation techniques 3.3.1.3. DiMoN Disaggregation Tool 3.3.1.4. Input Data 3.3.1.5. Methods Formerly Used 3.3.2. EPA Storm Water Management Model (SWMM) 3.3.2.1. Verification and Calibration 3.3.2.2. Stormwater Management Model PCSWMM 3.3.2.3. Complete support for all USEPA SWMM5 engine capabilities Chapter Four: Urban

    The effect of hydrostatic pressure on invasive measures of coronary physiology

    Full text link
    Introduction: Coronary arteries are at differing vertical heights in a supine patient relative to the aortic root. Pressure within an artery varies based on distance from the aorta due to hydrostatic effect. This could impact pressure-based indices of stenosis severity, as the vertical distance between distal and proximal pressure sensors creates a baseline pressure difference. This is neglected in clinical practice, as distal and proximal sensors are considered at the same vertical level. Methods: Pd/Pa, instantaneous wave free ratio (iFR), fractional flow reserve FFR and doppler flow velocity were recorded in 23 coronary stenoses in the standard supine patient position, and in the prone position. Measurements between positions were compared using a Student’s t test for matched pairs. Results: There were significant differences in mean Pd/Pa (0.05), iFR (0.06) and FFR (0.06) when comparing prone and supine positioning (p<0.05). When inferior to the aorta, mean Pd/Pa, iFR and FFR were 0.96±0.05, 0.93±0.11 and 0.84±0.10 respectively. When superior, mean Pd/Pa, iFR and FFR were 0.91±0.07, 0.87±0.11 and 0.78±0 respectively. Resting and hyperaemic doppler flow measurements did not change significantly when comparing prone and supine patient position. 26% of all FFR and 36% of all iFR values were re-classified across a treatment threshold when hydrostatic effect was corrected. Conclusion. Patient position alters physiological stenosis severity as quantified by invasive coronary pressure measurements. Coronary stenoses positioned inferiorly to the aorta, produce significantly higher Pd/Pa, iFR and FFR values when compared to a superior position. Conversely, patient position did not influence coronary doppler flow velocity. This is the first study to quantify the effect of hydrostatic pressure on invasive measures of coronary stenosis. The data supports hydrostatic effect as a potential confounding factor leading to inaccurate lesion assessment
    corecore