127 research outputs found
Calcium channels and pumps in cancer: changes and consequences
Increases in intracellular free Ca2+ play a major role in many cellular processes. The deregulation of Ca2+ signaling is a feature of a variety of diseases, and modulators of Ca2+ signaling are used to treat conditions as diverse as hypertension to pain. The Ca2+ signal also plays a role in processes important in cancer, such as proliferation and migration. Many studies in cancer have identified alterations in the expression of proteins involved in the movement of Ca2+ across the plasma membrane and subcellular organelles. In some cases, these Ca2+ channels or pumps are potential therapeutic targets for specific cancer subtypes or correlate with prognosis
Structuring heterogeneous biological information using fuzzy clustering of k-partite graphs
<p>Abstract</p> <p>Background</p> <p>Extensive and automated data integration in bioinformatics facilitates the construction of large, complex biological networks. However, the challenge lies in the interpretation of these networks. While most research focuses on the unipartite or bipartite case, we address the more general but common situation of <it>k</it>-partite graphs. These graphs contain <it>k </it>different node types and links are only allowed between nodes of different types. In order to reveal their structural organization and describe the contained information in a more coarse-grained fashion, we ask how to detect clusters within each node type.</p> <p>Results</p> <p>Since entities in biological networks regularly have more than one function and hence participate in more than one cluster, we developed a <it>k</it>-partite graph partitioning algorithm that allows for overlapping (fuzzy) clusters. It determines for each node a degree of membership to each cluster. Moreover, the algorithm estimates a weighted <it>k</it>-partite graph that connects the extracted clusters. Our method is fast and efficient, mimicking the multiplicative update rules commonly employed in algorithms for non-negative matrix factorization. It facilitates the decomposition of networks on a chosen scale and therefore allows for analysis and interpretation of structures on various resolution levels. Applying our algorithm to a tripartite disease-gene-protein complex network, we were able to structure this graph on a large scale into clusters that are functionally correlated and biologically meaningful. Locally, smaller clusters enabled reclassification or annotation of the clusters' elements. We exemplified this for the transcription factor MECP2.</p> <p>Conclusions</p> <p>In order to cope with the overwhelming amount of information available from biomedical literature, we need to tackle the challenge of finding structures in large networks with nodes of multiple types. To this end, we presented a novel fuzzy <it>k</it>-partite graph partitioning algorithm that allows the decomposition of these objects in a comprehensive fashion. We validated our approach both on artificial and real-world data. It is readily applicable to any further problem.</p
Disrupted endothelial cell heterogeneity and network organization impair vascular function in prediabetic obesity
Background: Obesity is a major risk factor for diabetes and cardiovascular diseases such as hypertension, heart failure, and stroke. Impaired endothelial function occurs in the earliest stages of obesity and underlies vascular alterations that give rise to cardiovascular disease. However, the mechanisms that link weight gain to endothelial dysfunction are ill-defined. Increasing evidence suggests that endothelial cells are not a population of uniform cells but are highly heterogeneous and are organized as a communicating multicellular network that controls vascular function. Purpose: To investigate the hypothesis that disrupted endothelial heterogeneity and network-level organization contribute to impaired vascular reactivity in obesity. Methods and Results: To study obesity-related vascular function without complications associated with diabetes, a state of prediabetic obesity was induced in rats. Small artery diameter recordings confirmed nitric-oxide mediated vasodilator responses were dependent on increases in endothelial calcium levels and were impaired in obese animals. Single-photon imaging revealed a linear relationship between blood vessel relaxation and population-wide calcium responses. Obesity did not alter the slope of this relationship, but impaired calcium responses in the endothelial cell network. The network comprised structural and functional components. The structural architecture, a hexagonal lattice network of connected cells, was unchanged in obesity. The functional network contained sub-populations of clustered specialized agonist-sensing cells from which signals were communicated through the network. In obesity there were fewer but larger clusters of sensory cells and communication path lengths between clusters increased. Communication between neighboring cells was unaltered in obesity. Altered network organization resulted in impaired, population-level calcium signaling and deficient endothelial control of vascular tone. Conclusions: The distribution of cells in the endothelial network is critical in determining overall vascular response. Altered cell heterogeneity and arrangement in obesity decreases endothelial function and provides a novel framework for understanding compromised endothelial function in cardiovascular disease
Leptin as a critical regulator of hepatocellular carcinoma development through modulation of human telomerase reverse transcriptase
<p>Abstract</p> <p>Background</p> <p>Numerous epidemiological studies have documented that obesity is associated with hepatocellular carcinoma (HCC). The aim of this study was to investigate the biological actions regulated by leptin, the obesity biomarker molecule, and its receptors in HCC and the correlation between leptin and human telomerase reverse transcriptase (hTERT), a known mediator of cellular immortalization.</p> <p>Methods</p> <p>We investigated the relationship between leptin, leptin receptors and hTERT mRNA expression in HCC and healthy liver tissue samples. In HepG2 cells, chromatin immunoprecipitation assay was used to study signal transducer and activator of transcription-3 (STAT3) and myc/mad/max transcription factors downstream of leptin which could be responsible for hTERT regulation. Flow cytometry was used for evaluation of cell cycle modifications and MMP1, 9 and 13 expression after treatment of HepG2 cells with leptin. Blocking of leptin's expression was achieved using siRNA against leptin and transfection with liposomes.</p> <p>Results</p> <p>We showed, for the first time, that leptin's expression is highly correlated with hTERT expression levels in HCC liver tissues. We also demonstrated in HepG2 cells that leptin-induced up-regulation of hTERT and TA was mediated through binding of STAT3 and Myc/Max/Mad network proteins on <it>hTERT </it>promoter. We also found that leptin could affect hepatocellular carcinoma progression and invasion through its interaction with cytokines and matrix mettaloproteinases (MMPs) in the tumorigenic microenvironment. Furthermore, we showed that histone modification contributes to leptin's gene regulation in HCC.</p> <p>Conclusions</p> <p>We propose that leptin is a key regulator of the malignant properties of hepatocellular carcinoma cells through modulation of hTERT, a critical player of oncogenesis.</p
A review of mathematical models for the formation of vascular networks
Two major mechanisms are involved in the formation of blood vasculature: vasculogenesis and angiogenesis. The former term describes the formation of a capillary-like network from either a dispersed or a monolayered population of endothelial cells, reproducible also in vitro by specific experimental assays. The latter term describes the sprouting of new vessels from an existing capillary or post-capillary venule. Similar mechanisms are also involved in the formation of the lymphatic system through a process generally called lymphangiogenesis. A number of mathematical approaches have been used to analyse these phenomena. In this article, we review the different types of models, with special emphasis on their ability to reproduce different biological systems and to predict measurable quantities which describe the overall processes. Finally, we highlight the advantages specific to each of the different modelling approaches. The research that led to the present paper was partially supported by a grant of the group GNFM of INdA
Theta-Burst Stimulation-Induced Plasticity over Primary Somatosensory Cortex Changes Somatosensory Temporal Discrimination in Healthy Humans
BACKGROUND: The somatosensory temporal discrimination threshold (STDT) measures the ability to perceive two stimuli as being sequential. Precisely how the single cerebral structures contribute in controlling the STDT is partially known and no information is available about whether STDT can be modulated by plasticity-inducing protocols. METHODOLOGY/PRINCIPAL FINDINGS: To investigate how the cortical and cerebellar areas contribute to the STDT we used transcranial magnetic stimulation and a neuronavigation system. We enrolled 18 healthy volunteers and 10 of these completed all the experimental sessions, including the control experiments. STDT was measured on the left hand before and after applying continuous theta-burst stimulation (cTBS) on the right primary somatosensory area (S1), pre-supplementary motor area (pre-SMA), right dorsolateral prefrontal cortex (DLPFC) and left cerebellar hemisphere. We then investigated whether intermittent theta-burst stimulation (iTBS) on the right S1 improved the STDT. After right S1 cTBS, STDT values increased whereas after iTBS to the same cortical site they decreased. cTBS over the DLPFC and left lateral cerebellum left the STDT statistically unchanged. cTBS over the pre-SMA also left the STDT statistically unchanged, but it increased the number of errors subjects made in distinguishing trials testing a single stimulus and those testing paired stimuli. CONCLUSIONS/SIGNIFICANCE: Our findings obtained by applying TBS to the cortical areas involved in processing sensory discrimination show that the STDT is encoded in S1, possibly depends on intrinsic S1 neural circuit properties, and can be modulated by plasticity-inducing TBS protocols delivered over S1. Our findings, giving further insight into mechanisms involved in somatosensory temporal discrimination, help interpret STDT abnormalities in movement disorders including dystonia and Parkinson's disease
FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2
In response to the 2013 Update of the European Strategy for Particle Physics, the Future Circular Collider (FCC) study was launched, as an international collaboration hosted by CERN. This study covers a highest-luminosity high-energy lepton collider (FCC-ee) and an energy-frontier hadron collider (FCC-hh), which could, successively, be installed in the same 100 km tunnel. The scientific capabilities of the integrated FCC programme would serve the worldwide community throughout the 21st century. The FCC study also investigates an LHC energy upgrade, using FCC-hh technology. This document constitutes the second volume of the FCC Conceptual Design Report, devoted to the electron-positron collider FCC-ee. After summarizing the physics discovery opportunities, it presents the accelerator design, performance reach, a staged operation scenario, the underlying technologies, civil engineering, technical infrastructure, and an implementation plan. FCC-ee can be built with today’s technology. Most of the FCC-ee infrastructure could be reused for FCC-hh. Combining concepts from past and present lepton colliders and adding a few novel elements, the FCC-ee design promises outstandingly high luminosity. This will make the FCC-ee a unique precision instrument to study the heaviest known particles (Z, W and H bosons and the top quark), offering great direct and indirect sensitivity to new physics
- …