44 research outputs found
Between Walras and Ricardo. Ladislaus von Bortkievicz and the origin of neo-ricardian theory
1. – Introduction Ladislaus von Bortkievicz, «by far the most eminent German statistician since Lexis» (Schumpeter 1932, p. 338), is known in the history of economic theory principally, as Schumpeter wrote, as «one of the most competent critics of Marx and Böhm-Bawerk» (Schumpeter, 1954, p. 851), – but it is also argued that «his essentially critical bent prevented him from producing, so far as economic theory is concerned, any creative work» (ibidem, p. 851), a judgement largely shared by hi..
Oxidative Stress in HPV-Driven Viral Carcinogenesis: Redox Proteomics Analysis of HPV-16 Dysplastic and Neoplastic Tissues
Genital infection by high risk Human Papillomavirus (HR-HPV), although recognized as the main etio-pathogenetic factor of cervical cancer, is not per se sufficient to induce tumour development. Oxidative stress (OS) represents an interesting and under-explored candidate as a promoting factor in HPV-initiated carcinogenesis. To gain insight into the role of OS in cervical cancer, HPV-16 positive tissues were collected from patients with invasive squamous cervical carcinoma, from patients with High Grade dysplastic HPV lesions and from patients with no clinical evidence of HPV lesions. After virological characterization, modulation of proteins involved in the redox status regulation was investigated. ERp57 and GST were sharply elevated in dysplastic and neoplastic tissues. TrxR2 peaked in dysplastic samples while iNOS was progressively reduced in dysplastic and neoplastic samples. By redox proteomic approach, five proteins were found to have increased levels of carbonyls in dysplastic samples respect to controls namely: cytokeratin 6, actin, cornulin, retinal dehydrogenase and GAPDH. In carcinoma samples the peptidyl-prolyl cis-trans isomerase A, ERp57, serpin B3, Annexin 2 and GAPDH were found less oxidized than in dysplastic tissues. HPV16 neoplastic progression seems associated with increased oxidant environment. In dysplastic tissues the oxidative modification of DNA and proteins involved in cell morphogenesis and terminal differentiation may provide the conditions for the neoplastic progression. Conversely cancer tissues seem to attain an improved control on oxidative damage as shown by the selective reduction of carbonyl adducts on key detoxifying/pro-survival proteins
Oxidative Stress in HPV-Driven Viral Carcinogenesis: Redox Proteomics Analysis of HPV-16 Dysplastic and Neoplastic Tissues
Genital infection by high risk Human Papillomavirus (HR-HPV), although recognized as the main etio-pathogenetic factor of cervical cancer, is not per se sufficient to induce tumour development. Oxidative stress (OS) represents an interesting and under-explored candidate as a promoting factor in HPV-initiated carcinogenesis. To gain insight into the role of OS in cervical cancer, HPV-16 positive tissues were collected from patients with invasive squamous cervical carcinoma, from patients with High Grade dysplastic HPV lesions and from patients with no clinical evidence of HPV lesions. After virological characterization, modulation of proteins involved in the redox status regulation was investigated. ERp57 and GST were sharply elevated in dysplastic and neoplastic tissues. TrxR2 peaked in dysplastic samples while iNOS was progressively reduced in dysplastic and neoplastic samples. By redox proteomic approach, five proteins were found to have increased levels of carbonyls in dysplastic samples respect to controls namely: cytokeratin 6, actin, cornulin, retinal dehydrogenase and GAPDH. In carcinoma samples the peptidyl-prolyl cis-trans isomerase A, ERp57, serpin B3, Annexin 2 and GAPDH were found less oxidized than in dysplastic tissues. HPV16 neoplastic progression seems associated with increased oxidant environment. In dysplastic tissues the oxidative modification of DNA and proteins involved in cell morphogenesis and terminal differentiation may provide the conditions for the neoplastic progression. Conversely cancer tissues seem to attain an improved control on oxidative damage as shown by the selective reduction of carbonyl adducts on key detoxifying/pro-survival proteins
Laser ablation is superior to TACE in large-sized hepatocellular carcinoma: A pilot case-control study
Background:Limited therapies are available for large ( 6540 mm) unresectable hepatocellular carcinoma (HCC). Currently, the standard treatment with transarterial chemoembolisation (TACE) is unsatisfactory with high recurrence rate and limited effect on survival. Laser Ablation (LA) has emerged as a relatively new technique characterized by high efficacy and good safety. This study is aimed to evaluate the efficacy of LA in comparison to TACE in patients with large HCC. Methods: Eighty-two patients with a single HCC nodule 6540 mm (BCLC stage A or B) were enrolled in this case-control study. Forty-one patients were treated with LA and 41 patients were treated with TACE. Response to therapy was evaluated according to the mRECIST criteria. Survival was calculated with Kaplan-Meier from the time of cancer diagnosis to death with values censored at the date of the last follow-up. Results: Twenty-six (63.4%) and 8 (19.5%) patients had a complete response after LA and TACE, respectively (p < 0.001). Subsequently we stratified the HCCs in 3 categories according to the nodule size: 40-50 mm, 51-60 mm, and > 60 mm. LA resulted superior to TACE especially in nodules ranging between 51 and 60 mm in diameter, with a complete response rate post-LA and post-TACE of 75% and 14.3%, respectively (p = 0.0133). The 36 months cumulative survival rate in patients treated with LA and TACE was 55.4% and 48.8%, respectively. The disease recurrence rates after LA and TACE were 19.5% and 75.0%, respectively. Conclusions: LA is a more effective therapeutic option than TACE in patients with solitary large HCC
TBD-catalysed solventless synthesis of symmetrically N,N′-substituted ureas from primary amines and diethyl carbonate
Symmetrically N,N′-substituted ureas were obtained from primary amines in very good yields under solvent-less conditions using diethyl carbonate (DEC) as the carbonylation reagent and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as the base catalyst. The products are precipitated directly from the reaction mixture after a volatile organic compound (VOC) free aqueous work-up. The catalyst can be recovered and reused
MCM-41-TBD as a new, efficient, supported heterogeneous catalyst for the synthesis of thioureas
The preparation of thioureas, by reaction of carbon disulfide with primary amines, can be efficiently catalyzed, under heterogeneous conditions, by MCM-TBD as a new and reusable catalyst
Decreased expression and increased oxidation of plasma haptoglobin in Alzheimer disease: Insights from redox proteomics
Alzheimer disease (AD) is one of the most disabling disorders of the elderly and the number of people worldwide facing dementia is expected to dramatically increase in the near future. Thus, one of the major concerns of modern society is to identify putative biomarkers that serve as a valuable early diagnostic tool to identify a subset of patients with increased risk to develop AD. An ideal biomarker should be present in blood before dementia is clinically confirmed, have high sensitivity and specificity, and be reproducible. Proteomics platforms offer a powerful strategy to reach these goals and recently have been demonstrated to be promising approaches. However, the high variability of technologies and studied populations has led to contrasting results. To increase specificity, we analyzed both protein expression profiles and oxidative modifications (carbonylation) of plasma proteins in mild cognitive impairment (MCI) and AD subjects compared with age-matched controls. Most of the proteins found to have differential levels in MCI and AD confirmed results already obtained in other cohort studies. Interestingly, we applied for the first time in MCI a redox proteomics approach to specifically identify oxidized proteins. Among them, haptoglobin, one of the most abundantly secreted glycoproteins with chaperone function, was found to be either increasingly downregulated or increasingly oxidized in AD and MCI compared with controls. We also demonstrated that in vitro oxidation of haptoglobin affects the formation of amyloid-beta fibrils, thus suggesting that oxidized haptoglobin is not able to act as an extracellular chaperone to prevent or slow formation of amyloid-beta aggregates. Another chaperone protein, alpha 2-macroglobulin, was found to be selectively oxidized in AD patients compared with controls. Our findings suggest that alterations in proteins acting as extracellular chaperones may contribute to exacerbating amyloid-beta toxicity in the peripheral system and may be considered a putative marker of disease progression. (C) 2012 Elsevier Inc. All rights reserved
Oxidative Stress in HPV-Driven Viral Carcinogenesis: Redox Proteomics Analysis of HPV-16 Dysplastic and Neoplastic Tissues
Genital infection by high risk Human Papillomavirus (HR-HPV), although recognized as the main etio-pathogenetic factor of cervical cancer, is not per se sufficient to induce tumour development. Oxidative stress (OS) represents an interesting and under-explored candidate as a promoting factor in HPV-initiated carcinogenesis. To gain insight into the role of OS in cervical cancer, HPV-16 positive tissues were collected from patients with invasive squamous cervical carcinoma, from patients with High Grade dysplastic HPV lesions and from patients with no clinical evidence of HPV lesions. After virological characterization, modulation of proteins involved in the redox status regulation was investigated. ERp57 and GST were sharply elevated in dysplastic and neoplastic tissues. TrxR2 peaked in dysplastic samples while iNOS was progressively reduced in dysplastic and neoplastic samples. By redox proteomic approach, five proteins were found to have increased levels of carbonyls in dysplastic samples respect to controls namely: cytokeratin 6, actin, cornulin, retinal dehydrogenase and GAPDH. In carcinoma samples the peptidyl-prolyl cis-trans isomerase A, ERp57, serpin B3, Annexin 2 and GAPDH were found less oxidized than in dysplastic tissues. HPV16 neoplastic progression seems associated with increased oxidant environment. In dysplastic tissues the oxidative modification of DNA and proteins involved in cell morphogenesis and terminal differentiation may provide the conditions for the neoplastic progression. Conversely cancer tissues seem to attain an improved control on oxidative damage as shown by the selective reduction of carbonyl adducts on key detoxifying/prosurvival proteins
Involvement of Oxidative Stress in Occurrence of Relapses in Multiple Sclerosis: The Spectrum of Oxidatively Modified Serum Proteins Detected by Proteomics and Redox Proteomics Analysis
<div><p>Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the central nervous system. Several evidences suggest that MS can be considered a multi-factorial disease in which both genetics and environmental factors are involved. Among proposed candidates, growing results support the involvement of oxidative stress (OS) in MS pathology. The aim of this study was to investigate the role of OS in event of exacerbations in MS on serum of relapsing-remitting (RR-MS) patients, either in relapsing or remitting phase, with respect to serum from healthy subjects. We applied proteomics and redox proteomics approaches to identify differently expressed and oxidatively modified proteins in the low-abundant serum protein fraction. Among differently expressed proteins ceruloplasmin, antithrombin III, clusterin, apolipoprotein E, and complement C3, were up-regulated in MS patients compared with healthy controls. Further by redox proteomics, vitamin D-binding protein showed a progressive trend of oxidation from remission to relapse, respect with controls. Similarly, the increase of oxidation of apolipoprotein A-IV confirmed that levels of OS are elevated with the progression of the disease. Our findings support the involvement of OS in MS and suggest that dysfunction of target proteins occurs upon oxidative damage and correlates with the pathology.</p></div
Spectra obtained by MALDI-ToF MS analysis related to spots of vitamin D-binding protein (DBP).
<p>DBP C-terminal region spectrum (upper panel) and major coverage DBP spectrum (lower panel).</p