101 research outputs found

    Spin transfer nano-oscillators

    Full text link
    The use of spin transfer nano-oscillators (STNOs) to generate microwave signal in nanoscale devices have aroused tremendous and continuous research interest in recent years. Their key features are frequency tunability, nanoscale size, broad working temperature, and easy integration with standard silicon technology. In this feature article, we give an overview of recent developments and breakthroughs in the materials, geometry design and properties of STNOs. We focus in more depth on our latest advances in STNOs with perpendicular anisotropy showing a way to improve the output power of STNO towards the {\mu}W range. Challenges and perspectives of the STNOs that might be productive topics for future research were also briefly discussed.Comment: 11 pages, 10 figures, nanoscale 201

    Three-Dimensional Magnetic Page Memory

    Full text link
    The increasing need to store large amounts of information with an ultra-dense, reliable, low power and low cost memory device is driving aggressive efforts to improve upon current perpendicular magnetic recording technology. However, the difficulties in fabricating small grain recording media while maintaining thermal stability and a high signal-to-noise ratio motivate development of alternative methods, such as the patterning of magnetic nano-islands and utilizing energy-assist for future applications. In addition, both from sensor and memory perspective three-dimensional spintronic devices are highly desirable to overcome the restrictions on the functionality in the planar structures. Here we demonstrate a three-dimensional magnetic-memory (magnetic page memory) based on thermally assisted and stray-field induced transfer of domains in a vertical stack of magnetic nanowires with perpendicular anisotropy. Using spin-torque induced domain shifting in such a device with periodic pinning sites provides additional degrees of freedom by allowing lateral information flow to realize truly three-dimensional integration

    Topological, non topological and instanton droplets driven by spin-transfer torque in materials with perpendicular magnetic anisotropy and Dzyaloshinskii-Moriya Interaction

    Full text link
    The interfacial Dzyaloshinskii-Moriya Interaction can modify the topology of droplets excited by a localized spin-polarized current. Here, we show that, in addition to the stationary droplet excitations with skyrmion number either one (topological) or zero (non-topological), there exists, for a fixed current, an excited mode with a non-stationary time behavior. We call this mode "instanton droplet", which is characterized by time domain transitions of the skyrmion number. These transitions are coupled to an emission of incoherent spin-waves that can be observed in the frequency domain as a source of noise. Our results are interesting from a fundamental point of view to study spin-wave emissions due to a topological transition in current-driven systems, and could open the route for experiments based on magnetoresistance effect for the design of a further generation of nanoscale microwave oscillators
    • …
    corecore