10,077 research outputs found

    Online open neuroimaging mass meta-analysis

    Get PDF
    We describe a system for meta-analysis where a wiki stores numerical data in a simple format and a web service performs the numerical computation. We initially apply the system on multiple meta-analyses of structural neuroimaging data results. The described system allows for mass meta-analysis, e.g., meta-analysis across multiple brain regions and multiple mental disorders.Comment: 5 pages, 4 figures SePublica 2012, ESWC 2012 Workshop, 28 May 2012, Heraklion, Greec

    Cohesin biology meets the loop extrusion model

    Get PDF
    Extensive research has revealed that cohesin acts as a topological device, trapping chromosomal DNA within a large tripartite ring. In so doing, cohesin contributes to the formation of compact and organized genomes. How exactly the cohesin subunits interact, how it opens, closes, and translocates on chromatin, and how it actually tethers DNA strands together are still being elucidated. A comprehensive understanding of these questions will shed light on how cohesin performs its many functions, including its recently proposed role as a chromatid loop extruder. Here, we discuss this possibility in light of our understanding of the molecular properties of cohesin complexes

    Binary inspiral, gravitational radiation, and cosmology

    Get PDF
    Observations of binary inspiral in a single interferometric gravitational wave detector can be cataloged according to signal-to-noise ratio ρ\rho and chirp mass M\cal M. The distribution of events in a catalog composed of observations with ρ\rho greater than a threshold ρ0\rho_0 depends on the Hubble expansion, deceleration parameter, and cosmological constant, as well as the distribution of component masses in binary systems and evolutionary effects. In this paper I find general expressions, valid in any homogeneous and isotropic cosmological model, for the distribution with ρ\rho and M\cal M of cataloged events; I also evaluate these distributions explicitly for relevant matter-dominated Friedmann-Robertson-Walker models and simple models of the neutron star mass distribution. In matter dominated Friedmann-Robertson-Walker cosmological models advanced LIGO detectors will observe binary neutron star inspiral events with ρ>8\rho>8 from distances not exceeding approximately 2 Gpc2\,\text{Gpc}, corresponding to redshifts of 0.480.48 (0.26) for h=0.8h=0.8 (0.50.5), at an estimated rate of 1 per week. As the binary system mass increases so does the distance it can be seen, up to a limit: in a matter dominated Einstein-deSitter cosmological model with h=0.8h=0.8 (0.50.5) that limit is approximately z=2.7z=2.7 (1.7) for binaries consisting of two 10 M⊙10\,\text{M}_\odot black holes. Cosmological tests based on catalogs of the kind discussed here depend on the distribution of cataloged events with ρ\rho and M\cal M. The distributions found here will play a pivotal role in testing cosmological models against our own universe and in constructing templates for the detection of cosmological inspiraling binary neutron stars and black holes.Comment: REVTeX, 38 pages, 9 (encapsulated) postscript figures, uses epsf.st

    Wetting and Minimal Surfaces

    Get PDF
    We study minimal surfaces which arise in wetting and capillarity phenomena. Using conformal coordinates, we reduce the problem to a set of coupled boundary equations for the contact line of the fluid surface, and then derive simple diagrammatic rules to calculate the non-linear corrections to the Joanny-de Gennes energy. We argue that perturbation theory is quasi-local, i.e. that all geometric length scales of the fluid container decouple from the short-wavelength deformations of the contact line. This is illustrated by a calculation of the linearized interaction between contact lines on two opposite parallel walls. We present a simple algorithm to compute the minimal surface and its energy based on these ideas. We also point out the intriguing singularities that arise in the Legendre transformation from the pure Dirichlet to the mixed Dirichlet-Neumann problem.Comment: 22 page

    The Origin of Black Hole Entropy in String Theory

    Get PDF
    I review some recent work in which the quantum states of string theory which are associated with certain black holes have been identified and counted. For large black holes, the number of states turns out to be precisely the exponential of the Bekenstein-Hawking entropy. This provides a statistical origin for black hole thermodynamics in the context of a potential quantum theory of gravity.Comment: 18 pages (To appear in the proceedings of the Pacific Conference on Gravitation and Cosmology, Seoul, Korea, February 1-6, 1996.

    Topological Entropy of Braids on the Torus

    Full text link
    A fast method is presented for computing the topological entropy of braids on the torus. This work is motivated by the need to analyze large braids when studying two-dimensional flows via the braiding of a large number of particle trajectories. Our approach is a generalization of Moussafir's technique for braids on the sphere. Previous methods for computing topological entropies include the Bestvina--Handel train-track algorithm and matrix representations of the braid group. However, the Bestvina--Handel algorithm quickly becomes computationally intractable for large braid words, and matrix methods give only lower bounds, which are often poor for large braids. Our method is computationally fast and appears to give exponential convergence towards the exact entropy. As an illustration we apply our approach to the braiding of both periodic and aperiodic trajectories in the sine flow. The efficiency of the method allows us to explore how much extra information about flow entropy is encoded in the braid as the number of trajectories becomes large.Comment: 19 pages, 44 figures. SIAM journal styl

    Gravitational Waves from coalescing binaries: Estimation of parameters

    Full text link
    The paper presents a statistical model which reproduces the results of Monte Carlo simulations to estimate the parameters of the gravitational wave signal from a coalesing binary system. The model however is quite general and would be useful in other parameter estimation problems.Comment: LaTeX with RevTeX macros, 4 figure

    The Cosmological Constant and Advanced Gravitational Wave Detectors

    Get PDF
    Interferometric gravitational wave detectors could measure the frequency sweep of a binary inspiral [characterized by its chirp mass] to high accuracy. The observed chirp mass is the intrinsic chirp mass of the binary source multiplied by (1+z)(1+z), where zz is the redshift of the source. Assuming a non-zero cosmological constant, we compute the expected redshift distribution of observed events for an advanced LIGO detector. We find that the redshift distribution has a robust and sizable dependence on the cosmological constant; the data from advanced LIGO detectors could provide an independent measurement of the cosmological constant.Comment: 13 pages plus 5 figure, LaTeX. Revised and final version, to appear in Phys. Rev.

    Observational constraints on the neutron star mass distribution

    Get PDF
    Radio observations of neutron star binary pulsar systems have constrained strongly the masses of eight neutron stars. Assuming neutron star masses are uniformly distributed between lower and upper bounds mlm_l and mum_u, the observations determine with 95\% confidence that 1.01<ml/M⊙<1.341.01 < m_l/\text{M}_\odot < 1.34 and 1.43<mu/M⊙<1.641.43 < m_u/\text{M}_\odot < 1.64. These limits give observational support to neutron star formation scenarios that suggest that masses should fall predominantly in the range 1.3<m/M⊙<1.61.3<m/\text{M}_\odot<1.6, and will also be important in the interpretation of binary inspiral observations by the Laser Interferometer Gravitational-wave Observatory.Comment: Postscript, 4 pages, NU-GR-

    Using Markov chain Monte Carlo methods for estimating parameters with gravitational radiation data

    Get PDF
    We present a Bayesian approach to the problem of determining parameters for coalescing binary systems observed with laser interferometric detectors. By applying a Markov Chain Monte Carlo (MCMC) algorithm, specifically the Gibbs sampler, we demonstrate the potential that MCMC techniques may hold for the computation of posterior distributions of parameters of the binary system that created the gravity radiation signal. We describe the use of the Gibbs sampler method, and present examples whereby signals are detected and analyzed from within noisy data.Comment: 21 pages, 10 figure
    • 

    corecore