157 research outputs found
Recommended from our members
Tritium technology review
The methods used in recovering, containing and controlling tritium in fusion reactor systems are the subject of the paper. Safety, cost, and breeding needs for tritium control are outlined
Recommended from our members
The release of cesium and the actinides from spent fuel under unsaturated conditions
Tests designed to be similar to the unsaturated and oxidizing conditions expected in the candidate repository at Yucca Mountain are in progress with spent fuel at 90{degree}C. The similarities and the differences in release behavior for {sup 137}Cs during the first 2.6 years and the actinides during the first 1.6 years of testing are presented for tests done with (1) water dripped on the fuel at a rate of 0.075 and 0.75 mL every 3.5 days and (2) in a saturated water vapor environment
Recommended from our members
Possible design modifications of ITER fuel cycle
During the ITER design phase, the conceptual design of the fuel processing cycle has been established. The fuel processing cycle is designed to be able to handle all the tritium containing streams of the ITER. These streams include plasma exhaust, blanket tritium recovery, pellet propellant, neutron beam exhaust, water coolant detritiation, waste water from the room air detritiation system. The design is very conservative, i.e., the flow rate of each stream is high and the detritiation factor required is very high. A preliminary optimization study has been carried out to simplify the ITER fuel cycle design. We investigated: The throughput and composition of the input tritium containing streams from various components to the fuel processing cycle. The fraction of those streams needed to be detritiated. The required detritiation factors required for each of the streams. The results of the investigation determined that the major input tritium containing steams can be reduced by at least a factor of 10. The required detritiation factor can be reduced from a factor of 100 to 10{sup 6}. The size of the fuel processing cycle, the tritium inventory and the complexity of this system can, therefore, also be reduced
The Flare-energy Distributions Generated by Kink-unstable Ensembles of Zero-net-current Coronal Loops
It has been proposed that the million degree temperature of the corona is due
to the combined effect of barely-detectable energy releases, so called
nanoflares, that occur throughout the solar atmosphere. Alas, the nanoflare
density and brightness implied by this hypothesis means that conclusive
verification is beyond present observational abilities. Nevertheless, we
investigate the plausibility of the nanoflare hypothesis by constructing a
magnetohydrodynamic (MHD) model that can derive the energy of a nanoflare from
the nature of an ideal kink instability. The set of energy-releasing
instabilities is captured by an instability threshold for linear kink modes.
Each point on the threshold is associated with a unique energy release and so
we can predict a distribution of nanoflare energies. When the linear
instability threshold is crossed, the instability enters a nonlinear phase as
it is driven by current sheet reconnection. As the ensuing flare erupts and
declines, the field transitions to a lower energy state, which is modelled by
relaxation theory, i.e., helicity is conserved and the ratio of current to
field becomes invariant within the loop. We apply the model so that all the
loops within an ensemble achieve instability followed by energy-releasing
relaxation. The result is a nanoflare energy distribution. Furthermore, we
produce different distributions by varying the loop aspect ratio, the nature of
the path to instability taken by each loop and also the level of radial
expansion that may accompany loop relaxation. The heating rate obtained is just
sufficient for coronal heating. In addition, we also show that kink instability
cannot be associated with a critical magnetic twist value for every point along
the instability threshold
Constraints on the Nucleon Strange Form Factors at Q^2 ~ 0.1 GeV^2
We report the most precise measurement to date of a parity-violating
asymmetry in elastic electron-proton scattering. The measurement was carried
out with a beam energy of 3.03 GeV and a scattering angle =6
degrees, with the result A_PV = -1.14 +/- 0.24 (stat) +/- 0.06 (syst) parts per
million. From this we extract, at Q^2 = 0.099 GeV^2, the strange form factor
combination G_E^s + 0.080 G_M^s = 0.030 +/- 0.025 (stat) +/- 0.006 (syst) +/-
0.012 (FF) where the first two errors are experimental and the last error is
due to the uncertainty in the neutron electromagnetic form factor. This result
significantly improves current knowledge of G_E^s and G_M^s at Q^2 ~0.1 GeV^2.
A consistent picture emerges when several measurements at about the same Q^2
value are combined: G_E^s is consistent with zero while G_M^s prefers positive
values though G_E^s=G_M^s=0 is compatible with the data at 95% C.L.Comment: minor wording changes for clarity, updated references, dropped one
figure to improve focu
To wet or not to wet: that is the question
Wetting transitions have been predicted and observed to occur for various
combinations of fluids and surfaces. This paper describes the origin of such
transitions, for liquid films on solid surfaces, in terms of the gas-surface
interaction potentials V(r), which depend on the specific adsorption system.
The transitions of light inert gases and H2 molecules on alkali metal surfaces
have been explored extensively and are relatively well understood in terms of
the least attractive adsorption interactions in nature. Much less thoroughly
investigated are wetting transitions of Hg, water, heavy inert gases and other
molecular films. The basic idea is that nonwetting occurs, for energetic
reasons, if the adsorption potential's well-depth D is smaller than, or
comparable to, the well-depth of the adsorbate-adsorbate mutual interaction. At
the wetting temperature, Tw, the transition to wetting occurs, for entropic
reasons, when the liquid's surface tension is sufficiently small that the free
energy cost in forming a thick film is sufficiently compensated by the fluid-
surface interaction energy. Guidelines useful for exploring wetting transitions
of other systems are analyzed, in terms of generic criteria involving the
"simple model", which yields results in terms of gas-surface interaction
parameters and thermodynamic properties of the bulk adsorbate.Comment: Article accepted for publication in J. Low Temp. Phy
Gravitational radiation from gamma-ray bursts as observational opportunities for LIGO and VIRGO
Gamma-ray bursts are believed to originate in core-collapse of massive stars.
This produces an active nucleus containing a rapidly rotating Kerr black hole
surrounded by a uniformly magnetized torus represented by two counter-oriented
current rings. We quantify black hole spin-interactions with the torus and
charged particles along open magnetic flux-tubes subtended by the event
horizon. A major output of Egw=4e53 erg is radiated in gravitational waves of
frequency fgw=500 Hz by a quadrupole mass-moment in the torus. Consistent with
GRB-SNe, we find (i) Ts=90s (tens of s, Kouveliotou et al. 1993), (ii)
aspherical SNe of kinetic energy Esn=2e51 erg (2e51 erg in SN1998bw, Hoeflich
et al. 1999) and (iii) GRB-energies Egamma=2e50 erg (3e50erg in Frail et al.
2001). GRB-SNe occur perhaps about once a year within D=100Mpc. Correlating
LIGO/Virgo detectors enables searches for nearby events and their spectral
closure density 6e-9 around 250Hz in the stochastic background radiation in
gravitational waves. At current sensitivity, LIGO-Hanford may place an upper
bound around 150MSolar in GRB030329. Detection of Egw thus provides a method
for identifying Kerr black holes by calorimetry.Comment: to appear in PRD, 49
Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles
We have made the first measurements of the virtual Compton scattering (VCS)
process via the H exclusive reaction in the nucleon resonance
region, at backward angles. Results are presented for the -dependence at
fixed GeV, and for the -dependence at fixed near 1.5 GeV.
The VCS data show resonant structures in the first and second resonance
regions. The observed -dependence is smooth. The measured ratio of
H to H cross sections emphasizes the different
sensitivity of these two reactions to the various nucleon resonances. Finally,
when compared to Real Compton Scattering (RCS) at high energy and large angles,
our VCS data at the highest (1.8-1.9 GeV) show a striking -
independence, which may suggest a transition to a perturbative scattering
mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.
Fin whale (Balaenoptera physalus) mitogenomics: A cautionary tale of defining sub-species from mitochondrial sequence monophyly
The advent of massive parallel sequencing technologies has resulted in an increase of studies based upon complete mitochondrial genome DNA sequences that revisit the taxonomic status within and among species. Spatially distinct monophyly in such mitogenomic genealogies, i.e., the sharing of a recent common ancestor among con-specific samples collected in the same region has been viewed as evidence for subspecies. Several recent studies in cetaceans have employed this criterion to suggest subsequent intraspecific taxonomic revisions. We reason that employing intra-specific, spatially distinct monophyly at non-recombining, clonally inherited genomes is an unsatisfactory criterion for defining subspecies based upon theoretical (genetic drift) and practical (sampling effort) arguments. This point was illustrated by a re-analysis of a global mitogenomic assessment of fin whales, Balaenoptera physalus spp., published by Archer et al. (2013), which proposed to further subdivide the Northern Hemisphere fin whale subspecies, B. p. physalus. The proposed revision was based upon the detection of spatially distinct monophyly among North Atlantic and North Pacific fin whales in a genealogy based upon complete mitochondrial genome DNA sequences. The extended analysis conducted in this study (1676 mitochondrial control region, 162 complete mitochondrial genome DNA sequences and 20 microsatellite loci genotyped in 380 samples) revealed that the apparent monophyly among North Atlantic fin whales reported by Archer et al. (2013) to be due to low sample sizes. In conclusion, defining sub-species from monophyly (i.e., the absence of para- or polyphyly) can lead to erroneous conclusions due to relatively 'trivial' aspects, such as sampling. Basic population genetic processes (i.e., genetic drift and migration) also affect the time to the most recent common ancestor and hence the probability that individuals in a sample are monophyletic
- …