8,996 research outputs found

    The computational experiment: an econometric tool

    Get PDF
    A specification of the steps in designing a computational experiment to address a well-posed quantitative question, emphasizing that the computational experiment is an econometric tool used in the task of deriving the quantitative implications of theory.Econometrics ; Econometric models

    Business cycles: real facts and a monetary myth

    Get PDF
    This paper argues that the reporting of facts in light of theory fosters the development of theory. Dynamic neoclassical macro theory guided the selection of facts to report. The hope is that these facts will foster the further development of this theory. A finding is that the price level is countercyclical in the post-Korean War period. This finding debunks the myths that the price level is procyclical, with the postwar period being no exception.Business cycles

    Cyclical movements of the labor input and its implicit real wage

    Get PDF
    An examination of whether a different specification for labor input and real wages leads to a reconsideration of labor force volatility during business cycles.Wages

    Integrable boundary conditions for multi-species ASEP

    Full text link
    The first result of the present paper is to provide classes of explicit solutions for integrable boundary matrices for the multi-species ASEP with an arbitrary number of species. All the solutions we have obtained can be seen as representations of a new algebra that contains the boundary Hecke algebra. The boundary Hecke algebra is not sufficient to build these solutions. This is the second result of our paper.Comment: 20 page

    Dissociation of CH4 by electron impact: Production of metastable hydrogen and carbon fragments

    Get PDF
    Metastable fragments produced by electron impact excitation of CH4 have been investigated for incident electron energies from threshold to 300 eV. Only metastable hydrogen and carbon atoms were observed. Onset energies for the production of metastable hydrogen atoms were observed at electron impact energies of 22.0 + or - .5 eV, 25.5 + or - .6 eV, 36.7 + or - .6 eV and 66 + or - 3 eV, and at 26.6 + or - .6 eV for the production of metastable carbon atoms. Most of the fragments appear to have been formed in high-lying Rydberg states. The total metastable hydrogen cross section reaches a maximum value of approximately 1 X 10 to the minus 18th power sq cm at 100 eV. At the same energy, the metastable carbon cross section is 2 x 10 to the minus 19th power sq cm

    Binary inspiral, gravitational radiation, and cosmology

    Get PDF
    Observations of binary inspiral in a single interferometric gravitational wave detector can be cataloged according to signal-to-noise ratio ρ\rho and chirp mass M\cal M. The distribution of events in a catalog composed of observations with ρ\rho greater than a threshold ρ0\rho_0 depends on the Hubble expansion, deceleration parameter, and cosmological constant, as well as the distribution of component masses in binary systems and evolutionary effects. In this paper I find general expressions, valid in any homogeneous and isotropic cosmological model, for the distribution with ρ\rho and M\cal M of cataloged events; I also evaluate these distributions explicitly for relevant matter-dominated Friedmann-Robertson-Walker models and simple models of the neutron star mass distribution. In matter dominated Friedmann-Robertson-Walker cosmological models advanced LIGO detectors will observe binary neutron star inspiral events with ρ>8\rho>8 from distances not exceeding approximately 2Gpc2\,\text{Gpc}, corresponding to redshifts of 0.480.48 (0.26) for h=0.8h=0.8 (0.50.5), at an estimated rate of 1 per week. As the binary system mass increases so does the distance it can be seen, up to a limit: in a matter dominated Einstein-deSitter cosmological model with h=0.8h=0.8 (0.50.5) that limit is approximately z=2.7z=2.7 (1.7) for binaries consisting of two 10M10\,\text{M}_\odot black holes. Cosmological tests based on catalogs of the kind discussed here depend on the distribution of cataloged events with ρ\rho and M\cal M. The distributions found here will play a pivotal role in testing cosmological models against our own universe and in constructing templates for the detection of cosmological inspiraling binary neutron stars and black holes.Comment: REVTeX, 38 pages, 9 (encapsulated) postscript figures, uses epsf.st

    Gravitational radiation from a particle in circular orbit around a black hole. VI. Accuracy of the post-Newtonian expansion

    Full text link
    A particle of mass μ\mu moves on a circular orbit around a nonrotating black hole of mass MM. Under the assumption μM\mu \ll M the gravitational waves emitted by such a binary system can be calculated exactly numerically using black-hole perturbation theory. If, further, the particle is slowly moving, then the waves can be calculated approximately analytically, and expressed in the form of a post-Newtonian expansion. We determine the accuracy of this expansion in a quantitative way by calculating the reduction in signal-to-noise ratio incurred when matched filtering the exact signal with a nonoptimal, post-Newtonian filter.Comment: 5 pages, ReVTeX, 1 figure. A typographical error was discovered in the computer code used to generate the results presented in the paper. The corrected results are presented in an Erratum, which also incorporates new results, obtained using the recently improved post-Newtonian calculations of Tanaka, Tagoshi, and Sasak

    The Cosmological Constant and Advanced Gravitational Wave Detectors

    Get PDF
    Interferometric gravitational wave detectors could measure the frequency sweep of a binary inspiral [characterized by its chirp mass] to high accuracy. The observed chirp mass is the intrinsic chirp mass of the binary source multiplied by (1+z)(1+z), where zz is the redshift of the source. Assuming a non-zero cosmological constant, we compute the expected redshift distribution of observed events for an advanced LIGO detector. We find that the redshift distribution has a robust and sizable dependence on the cosmological constant; the data from advanced LIGO detectors could provide an independent measurement of the cosmological constant.Comment: 13 pages plus 5 figure, LaTeX. Revised and final version, to appear in Phys. Rev.

    Testing Alternative Theories of Gravity using LISA

    Full text link
    We investigate the possible bounds which could be placed on alternative theories of gravity using gravitational wave detection from inspiralling compact binaries with the proposed LISA space interferometer. Specifically, we estimate lower bounds on the coupling parameter \omega of scalar-tensor theories of the Brans-Dicke type and on the Compton wavelength of the graviton \lambda_g in hypothetical massive graviton theories. In these theories, modifications of the gravitational radiation damping formulae or of the propagation of the waves translate into a change in the phase evolution of the observed gravitational waveform. We obtain the bounds through the technique of matched filtering, employing the LISA Sensitivity Curve Generator (SCG), available online. For a neutron star inspiralling into a 10^3 M_sun black hole in the Virgo Cluster, in a two-year integration, we find a lower bound \omega > 3 * 10^5. For lower-mass black holes, the bound could be as large as 2 * 10^6. The bound is independent of LISA arm length, but is inversely proportional to the LISA position noise error. Lower bounds on the graviton Compton wavelength ranging from 10^15 km to 5 * 10^16 km can be obtained from one-year observations of massive binary black hole inspirals at cosmological distances (3 Gpc), for masses ranging from 10^4 to 10^7 M_sun. For the highest-mass systems (10^7 M_sun), the bound is proportional to (LISA arm length)^{1/2} and to (LISA acceleration noise)^{-1/2}. For the others, the bound is independent of these parameters because of the dominance of white-dwarf confusion noise in the relevant part of the frequency spectrum. These bounds improve and extend earlier work which used analytic formulae for the noise curves.Comment: 16 pages, 9 figures, submitted to Classical & Quantum Gravit
    corecore