9,314 research outputs found
The computational experiment: an econometric tool
A specification of the steps in designing a computational experiment to address a well-posed quantitative question, emphasizing that the computational experiment is an econometric tool used in the task of deriving the quantitative implications of theory.Econometrics ; Econometric models
Business cycles: real facts and a monetary myth
This paper argues that the reporting of facts in light of theory fosters the development of theory. Dynamic neoclassical macro theory guided the selection of facts to report. The hope is that these facts will foster the further development of this theory. A finding is that the price level is countercyclical in the post-Korean War period. This finding debunks the myths that the price level is procyclical, with the postwar period being no exception.Business cycles
Cyclical movements of the labor input and its implicit real wage
An examination of whether a different specification for labor input and real wages leads to a reconsideration of labor force volatility during business cycles.Wages
Integrable boundary conditions for multi-species ASEP
The first result of the present paper is to provide classes of explicit
solutions for integrable boundary matrices for the multi-species ASEP with an
arbitrary number of species.
All the solutions we have obtained can be seen as representations of a new
algebra that contains the boundary Hecke algebra. The boundary Hecke algebra is
not sufficient to build these solutions. This is the second result of our
paper.Comment: 20 page
Dissociation of CH4 by electron impact: Production of metastable hydrogen and carbon fragments
Metastable fragments produced by electron impact excitation of CH4 have been investigated for incident electron energies from threshold to 300 eV. Only metastable hydrogen and carbon atoms were observed. Onset energies for the production of metastable hydrogen atoms were observed at electron impact energies of 22.0 + or - .5 eV, 25.5 + or - .6 eV, 36.7 + or - .6 eV and 66 + or - 3 eV, and at 26.6 + or - .6 eV for the production of metastable carbon atoms. Most of the fragments appear to have been formed in high-lying Rydberg states. The total metastable hydrogen cross section reaches a maximum value of approximately 1 X 10 to the minus 18th power sq cm at 100 eV. At the same energy, the metastable carbon cross section is 2 x 10 to the minus 19th power sq cm
Binary inspiral, gravitational radiation, and cosmology
Observations of binary inspiral in a single interferometric gravitational
wave detector can be cataloged according to signal-to-noise ratio and
chirp mass . The distribution of events in a catalog composed of
observations with greater than a threshold depends on the
Hubble expansion, deceleration parameter, and cosmological constant, as well as
the distribution of component masses in binary systems and evolutionary
effects. In this paper I find general expressions, valid in any homogeneous and
isotropic cosmological model, for the distribution with and of
cataloged events; I also evaluate these distributions explicitly for relevant
matter-dominated Friedmann-Robertson-Walker models and simple models of the
neutron star mass distribution. In matter dominated Friedmann-Robertson-Walker
cosmological models advanced LIGO detectors will observe binary neutron star
inspiral events with from distances not exceeding approximately
, corresponding to redshifts of (0.26) for
(), at an estimated rate of 1 per week. As the binary system mass
increases so does the distance it can be seen, up to a limit: in a matter
dominated Einstein-deSitter cosmological model with () that limit
is approximately (1.7) for binaries consisting of two
black holes. Cosmological tests based on catalogs of the
kind discussed here depend on the distribution of cataloged events with
and . The distributions found here will play a pivotal role in testing
cosmological models against our own universe and in constructing templates for
the detection of cosmological inspiraling binary neutron stars and black holes.Comment: REVTeX, 38 pages, 9 (encapsulated) postscript figures, uses epsf.st
Gravitational radiation from a particle in circular orbit around a black hole. VI. Accuracy of the post-Newtonian expansion
A particle of mass moves on a circular orbit around a nonrotating black
hole of mass . Under the assumption the gravitational waves
emitted by such a binary system can be calculated exactly numerically using
black-hole perturbation theory. If, further, the particle is slowly moving,
then the waves can be calculated approximately analytically, and expressed in
the form of a post-Newtonian expansion. We determine the accuracy of this
expansion in a quantitative way by calculating the reduction in signal-to-noise
ratio incurred when matched filtering the exact signal with a nonoptimal,
post-Newtonian filter.Comment: 5 pages, ReVTeX, 1 figure. A typographical error was discovered in
the computer code used to generate the results presented in the paper. The
corrected results are presented in an Erratum, which also incorporates new
results, obtained using the recently improved post-Newtonian calculations of
Tanaka, Tagoshi, and Sasak
The Cosmological Constant and Advanced Gravitational Wave Detectors
Interferometric gravitational wave detectors could measure the frequency
sweep of a binary inspiral [characterized by its chirp mass] to high accuracy.
The observed chirp mass is the intrinsic chirp mass of the binary source
multiplied by , where is the redshift of the source. Assuming a
non-zero cosmological constant, we compute the expected redshift distribution
of observed events for an advanced LIGO detector. We find that the redshift
distribution has a robust and sizable dependence on the cosmological constant;
the data from advanced LIGO detectors could provide an independent measurement
of the cosmological constant.Comment: 13 pages plus 5 figure, LaTeX. Revised and final version, to appear
in Phys. Rev.
Wetting and Minimal Surfaces
We study minimal surfaces which arise in wetting and capillarity phenomena.
Using conformal coordinates, we reduce the problem to a set of coupled boundary
equations for the contact line of the fluid surface, and then derive simple
diagrammatic rules to calculate the non-linear corrections to the Joanny-de
Gennes energy. We argue that perturbation theory is quasi-local, i.e. that all
geometric length scales of the fluid container decouple from the
short-wavelength deformations of the contact line. This is illustrated by a
calculation of the linearized interaction between contact lines on two opposite
parallel walls. We present a simple algorithm to compute the minimal surface
and its energy based on these ideas. We also point out the intriguing
singularities that arise in the Legendre transformation from the pure Dirichlet
to the mixed Dirichlet-Neumann problem.Comment: 22 page
- …