615 research outputs found

    IVUS and OCT: Either or Survivor …

    Get PDF

    Coronary Responses and Differential Mechanisms of Late Stent Thrombosis Attributed to First-Generation Sirolimus- and Paclitaxel-Eluting Stents

    Get PDF
    ObjectivesThe purpose of this study was to assess the mechanism(s) of late stent thrombosis (LST) and vascular healing responses in first-generation polymeric drug-eluting stents (DES).BackgroundRecent clinical trials have reported variations in late lumen loss between first-generation sirolimus-eluting stents (SES) and paclitaxel-eluting stents (PES). Little is known, however, about the vascular responses, time course of healing, and underlying mechanism(s) of complications of LST between platforms in human coronary implants.MethodsThe overall analysis included 174 cases (230 DES lesions) from the CVPath Institute's stent registry. Histomorphometry was performed on coronary stents from 127 patients (171 lesions) who died ≥30 days after receiving stent implants in which fibrin deposition, endothelial strut coverage, inflammatory response, and mechanism(s) of in-stent thrombosis were assessed.ResultsBoth platforms demonstrated increased neointimal thickness over time where values were greater in PES (mean 0.13 mm; range 0.03 to 0.20 mm) than SES (mean 0.10 mm; range 0.04 to 0.15 mm; p = 0.04). The percentage of uncovered struts was similar between SES and PES including stents with LST (SES = 21% vs. PES = 27%; p = 0.47). The underlying mechanism(s) of LST, however, was strikingly different between platforms; localized strut hypersensitivity was exclusive to SES, whereas malapposition secondary to excessive fibrin deposition was the underlying cause in PES. Moreover, although both PES and SES showed nearly complete strut coverage after 12 months for on-label use, the majority of stents placed for off-label indications remained unhealed after 12 months in both types of DES.ConclusionsDifferential mechanisms of LST involving either hypersensitivity or excessive fibrin were identified between first-generation DES in which overall stent healing was further delayed in DES placed for off-label indications

    Incidence and Predictors of Drug-Eluting Stent Fracture in Human Coronary Artery A Pathologic Analysis

    Get PDF
    ObjectivesThe aim of this study was to perform pathologic assessment on stent fracture.BackgroundClinically, stent fracture has been reported in 1% to 2% of patients after drug-eluting stent (DES) implantation.MethodsHigh-contrast film-based radiographs of 177 consecutive lesions from the CVPath DES autopsy registry were reviewed. Stent fracture was graded as I (single-strut fracture), II (≥2 struts), III (≥2 struts with deformation), IV (with transection without gap), and V (with transection causing gap in stent segment). The incidence of adverse pathologic findings (thrombosis and restenosis) was assessed histologically.ResultsStent fracture was documented in 51 lesions (29%; grade I = 10, II = 14, III = 12, IV = 6, and V = 9). Lesions with stent fracture had longer duration after implantation (172 days [interquartile range (IQR) 31 to 630 days] vs. 44 days [IQR 7 to 270 days], p = 0.004), a higher rate of Cypher (Cordis Corp., Miami Lakes, Florida) stent usage (63% vs. 36%, p = 0.001), longer stent length (30.0 mm [IQR 22.0 to 40.0 mm] vs. 20.0 mm [IQR 14.0 to 27.3 mm], p < 0.0001), and a higher rate of overlapping stents (45% vs. 22%, p = 0.003). Although fracture with grade I to IV did not have significant impact on the occurrence of adverse pathologic findings such as thrombosis and restenosis, 67% of the grade V fracture lesions were associated with adverse pathologic findings at fracture sites. Longer stent length, use of Cypher, and longer duration of implant were identified as independent risk factors of stent fracture by logistic regression analysis.ConclusionsThe incidence of stent fracture was 29% lesions at autopsy, which is much higher than clinically reported. A high rate of adverse pathologic findings was observed in lesions with grade V stent fracture, whereas fracture with grade I to IV did not have a significant impact on the pathological outcome

    The Pathology of Neoatherosclerosis in Human Coronary Implants Bare-Metal and Drug-Eluting Stents

    Get PDF
    ObjectivesHuman coronary bare-metal stents (BMS) and drug-eluting stents (DES) from autopsy cases with implant duration >30 days were examined for the presence of neointimal atherosclerotic disease.BackgroundNeointimal atherosclerotic change (neoatherosclerosis) after BMS implantation is rarely reported and usually occurs beyond 5 years. The incidence of neoatherosclerosis after DES implantation has not been reported.MethodsAll available cases from the CVPath stent registry (n = 299 autopsies), which includes a total of 406 lesions—197 BMS, 209 DES (103 sirolimus-eluting stents [SES] and 106 paclitaxel-eluting stents [PES])—with implant duration >30 days were examined. Neoatherosclerosis was recognized as clusters of lipid-laden foamy macrophages within the neointima with or without necrotic core formation.ResultsThe incidence of neoatherosclerosis was significantly greater in DES lesions (31%) than BMS lesions (16%; p < 0.001). The median stent duration with neoatherosclerosis was shorter in DES than BMS (DES, 420 days [interquartile range [IQR]: 361 to 683 days]; BMS, 2,160 days [IQR: 1,800 to 2,880 days], p < 0.001). Unstable lesions characterized as thin-cap fibroatheromas or plaque rupture were more frequent in BMS (n = 7, 4%) than in DES (n = 3, 1%; p = 0.17), with relatively shorter implant durations for DES (1.5 ± 0.4 years) compared to BMS (6.1 ± 1.5 years). Independent determinants of neoatherosclerosis identified by multiple logistic regression included younger age (p < 0.001), longer implant durations (p < 0.001), SES usage (p < 0.001), PES usage (p = 0.001), and underlying unstable plaques (p = 0.004).ConclusionsNeoatherosclerosis is a frequent finding in DES and occurs earlier than in BMS. Unstable features of neoatherosclerosis are identified for both BMS and DES with shorter implant durations for the latter. The development of neoatherosclerosis may be yet another rare contributing factor to late thrombotic events

    Paclitaxel- and Sirolimus-coated Balloons in Peripheral Artery Disease Treatment: Current Perspectives and Concerns

    Get PDF
    Drug-coated balloons (DCBs) have become an established therapy for the treatment of above-the-knee peripheral artery disease. The paclitaxel DCB has shown clinical benefit in terms of patency and freedom from re-intervention in multiple randomised trials. However, a recent meta-analysis has suggested an association between mortality and the use of paclitaxel-coated devices. Sirolimus is another potential choice of anti-proliferative agent for use in DCBs because of its wider therapeutic index and lower risk for dose-dependent toxicity. More recently, encapsulating sirolimus in micro-reservoirs or polymers has facilitated the development of effective sirolimus DCBs, some of which are available in Europe and Asia. In this review, the authors focus on paclitaxel and sirolimus DCB technologies from the standpoint of drug characteristics and clinical trials

    Vulnerable Plaque in Patients with Acute Coronary Syndrome: Identification, Importance, and Management

    Get PDF
    MI is a leading cause of morbidity and mortality worldwide. Coronary artery thrombosis is the final pathologic feature of the most cases of acute MI primarily caused by atherosclerotic coronary artery disease. The concept of vulnerable plaque has evolved over the years but originated from early pioneering work unveiling the crucial role of plaque rupture and subsequent coronary thrombosis as the dominant cause of MI. Along with systemic cardiovascular risk factors, developments of intravascular and non-invasive imaging modalities have allowed us to identify coronary plaques thought to be at high risk for rupture. However, morphological features alone may only be one of many factors which promote plaque progression. The current vulnerable-plaque-oriented approaches to accomplish personalized risk assessment and treatment have significant room for improvement. In this review, the authors discuss recent advances in the understanding of vulnerable plaque and its management strategy from pathology and clinical perspectives

    Integrative single-cell meta-analysis reveals disease-relevant vascular cell states and markers in human atherosclerosis

    Get PDF
    Coronary artery disease (CAD) is characterized by atherosclerotic plaque formation in the arterial wall. CAD progression involves complex interactions and phenotypic plasticity among vascular and immune cell lineages. Single-cell RNA-seq (scRNA-seq) studies have highlighted lineage-specific transcriptomic signatures, but human cell phenotypes remain controversial. Here, we perform an integrated meta-analysis of 22 scRNA-seq libraries to generate a comprehensive map of human atherosclerosis with 118,578 cells. Besides characterizing granular cell-type diversity and communication, we leverage this atlas to provide insights into smooth muscle cell (SMC) modulation. We integrate genome-wide association study data and uncover a critical role for modulated SMC phenotypes in CAD, myocardial infarction, and coronary calcification. Finally, we identify fibromyocyte/fibrochondrogenic SMC markers (LTBP1 and CRTAC1) as proxies of atherosclerosis progression and validate these through omics and spatial imaging analyses. Altogether, we create a unified atlas of human atherosclerosis informing cell state-specific mechanistic and translational studies of cardiovascular diseases.</p
    corecore