12 research outputs found
Impact of non-ideal analyte behavior on the separation of protein aggregates by asymmetric flow field-flow fractionation
Asymmetric flow field-flow fractionation is a valuable tool for the characterization of protein aggregates in biotechnology owing to its broad size range and unique separation principle. However, in practice asymmetric flow field-flow fractionation is non-trivial to use due to the major deviations from theory and the influence on separation by various factors that are not fully understood. Here we report methods to assess the non-ideal effects that influence asymmetric flow field-flow fractionation separation and for the first time identify experimentally the main factors that impact it. Furthermore, we propose new approaches to minimize such non-ideal behavior, showing that by adjusting the mobile phase composition (pH and ionic strength) the resolution of asymmetric flow field-flow fractionation separation can be drastically improved. Additionally, we propose a best practice method for new proteins
Determination of the Density of Protein Particles Using a Suspended Microchannel Resonator
One of the analytical tools for characterization of subvisible particles, which gained popularity over the last years because of its unique capabilities, is the resonance mass measurement technique. However, a challenge that this technique presents is the need to know the exact density of the measured particles in order to obtain accurate size calculations. The density of proteinaceous subvisible particles has not been measured experimentally yet and to date researchers have been using estimated density values. In this paper, we report for a first-time experimental measurements of the density of protein particles (0.2-5 μm in size) using particles created by stressing three different proteins using four different types of stress conditions. Interestingly, the particle density values that were measured varied between 1.28 and 1.33 g/cm(3) and were lower than previous estimates. Furthermore, it was found that although the density of proteinaceous particles was affected to a very low degree by the stress conditions used to generate them, there is relatively larger difference between particles originating from different classes of proteins (e.g., monoclonal antibody vs. bovine serum albumin)
Comparative Evaluation of Two Methods for Preparative Fractionation of Proteinaceous Subvisible Particles-Differential Centrifugation and FACS
The goal of this study was to compare and evaluate two preparative techniques for fractionation of proteinaceous subvisible particles. This work enables future studies to address the potential biological consequences of proteinaceous subvisible particles in protein therapeutic products.
Particles were generated by heat stress and separated by size using differential centrifugation and FACS (Fluorescence-activated cell sorter). Resulting fractions were characterized by size-exclusion chromatography, light obscuration, flow imaging microscopy and resonant mass measurement.
Here we report the optimization and comprehensive evaluation of two methods for preparative fractionation of subvisible proteinaceous particles into distinct size fractions in the range between 0.25 and 100 mu m: differential centrifugation and FACS. Using these methods, well-defined size fractions were prepared and characterized in detail. Critical assessment and comparison of the two techniques demonstrated their complementarity and for the first time-their relative advantages and drawbacks.
FACS and differential centrifugation are valuable tools to prepare well-defined size-fractions of subvisible proteinaceous particles. Both techniques possess unique and advantageous attributes and will likely find complementary application in future research on the biological consequences of proteinaceous subvisible particles
Selective Oxidation of Methionine and Tryptophan Residues in a Therapeutic IgG1 Molecule
Oxidation of methionine and tryptophan are common degradation pathways for monoclonal antibodies and present major analytical challenges in biotechnology. Generally, protein oxidation is detectable in stability and/or stressed samples (e.g., exposed to hydrogen peroxide, UV light, or metal ions). The induced chemical modifications may impact the biological activity of antibodies and may have biological consequences. However, these effects and the contribution of individual protein modifications are difficult to delineate as different amino acids are often oxidized simultaneously and accompanied by other degradants such as aggregates, especially in forced degradation studies. Here, we report a new method to obtain selective oxidation of methionine or tryptophan by using oxidation reagents combined with large excess of free tryptophan or methionine, correspondingly. More specifically, using hydrogen peroxide or tert-butyl hydroperoxide in combination with addition of free tryptophan allowed for selective oxidation of methionine. Conversely, the use of 2,2-azobis(2-amidinopropane) dihydrochloride in combination with free methionine resulted in selective tryptophan oxidation, whereas methionine oxidation was not significantly altered. This novel stress model system may prove to be valuable tool in future mechanistic studies of oxidative degradation of protein therapeutics
Measuring Subvisible Particles in Protein Formulations Using a Modified Light Obscuration Sensor with Improved Detection Capabilities
Although light obscuration is the "gold standard" for subvisible particle measurements in biopharmaceutical products, the current technology has limitations with respect to the detection of translucent proteinaceous particles and particles of sizes smaller and around 2 μm. Here, we describe the evaluation of a modified light obscuration sensor utilizing a novel measuring mode. Whereas standard light obscuration methodology monitors the height (amplitude) of the signal, the new approach monitors its length (width). Experimental evaluation demonstrated that this new detection mode leads to improved detection of subvisible particles of sizes smaller than 2 μm, reduction of artifacts during measurements especially of low concentrations of translucent protein particles, and higher counting accuracy as compared to flow imaging microscopy and standard light obscuration measurements
Factors Governing the Precision of Subvisible Particle Measurement Methods - A Case Study with a Low-Concentration Therapeutic Protein Product in a Prefilled Syringe
PURPOSE:
The current study was performed to assess the precision of the principal subvisible particle measurement methods available today. Special attention was given to identifying the sources of error and the factors governing analytical performance.
METHODS:
The performance of individual techniques was evaluated using a commercial biologic drug product in a prefilled syringe container. In control experiments, latex spheres were used as standards and instrument calibration suspensions.
RESULTS:
The results reported in this manuscript clearly demonstrated that the particle measurement techniques operating in the submicrometer range have much lower precision than the micrometer size-range methods. It was established that the main factor governing the relatively poor precision of submicrometer methods in general and inherently, is their low sampling volume and the corresponding large extrapolation factors for calculating final results.
CONCLUSIONS:
The variety of new methods for submicrometer particle analysis may in the future support product characterization; however, the performance of the existing methods does not yet allow for their use in routine practice and quality control
Extensive Chemical Modifications in the Primary Protein Structure of IgG1 Subvisible Particles Are Necessary for Breaking Immune Tolerance
A current concern with the use of therapeutic proteins is the likely presence of aggregates and submicrometer, subvisible, and visible particles. It has been proposed that aggregates and particles may lead to unwanted increases in the immune response with a possible impact on safety or efficacy. The aim of this study was thus to evaluate the ability of subvisible particles of a therapeutic antibody to break immune tolerance in an IgG1 transgenic mouse model and to understand the particle attributes that might play a role in this process. We investigated the immunogenic properties of subvisible particles (unfractionated, mixed populations, and well-defined particle size fractions) using a transgenic mouse model expressing a mini-repertoire of human IgG1 (hIgG1 tg). Immunization with proteinaceous subvisible particles generated by artificial stress conditions demonstrated that only subvisible particles bearing very extensive chemical modifications within the primary amino acid structure could break immune tolerance in the hIgG1 transgenic mouse model. Protein particles exhibiting low levels of chemical modification were not immunogenic in this model
Characterization of mAb dimers reveals predominant dimer forms common in therapeutic mAbs
The formation of undesired high molecular weight species such as dimers is an important quality attribute for therapeutic monoclonal antibody formulations. Therefore, the thorough understanding of mAb dimerization and the detailed characterization mAb dimers is of great interest for future pharmaceutical development of therapeutic antibodies. In this work, we focused on the analyses of different mAb dimers regarding size, surface properties, chemical identity, overall structure and localization of possible dimerization sites. Dimer fractions of different mAbs were isolated to a satisfactory purity from bulk material and revealed two predominant overall structures, namely elongated and compact dimer forms. The elongated dimers displayed one dimerization site involving the tip of the Fab domain. Depending on the stress applied, these elongated dimers are connected either covalently or non-covalently. In contrast, the compact dimers exhibited non-covalent association. Several interaction points were detected for the compact dimers involving the hinge region or the base of the Fab domain. These results indicate that mAb dimer fractions are rather complex and may contain more than one kind of dimer. Nevertheless, the overall appearance of mAb dimers suggests the existence of two predominant dimeric structures, elongated and compact, which are commonly present in preparations of therapeutic mAbs
Characterization of mAb dimers reveals predominant dimer forms common in therapeutic mAbs
The formation of undesired high molecular weight species such as dimers is an important quality attribute for therapeutic monoclonal antibody formulations. Therefore, the thorough understanding of mAb dimerization and the detailed characterization mAb dimers is of great interest for future pharmaceutical development of therapeutic antibodies. In this work, we focused on the analyses of different mAb dimers regarding size, surface properties, chemical identity, overall structure and localization of possible dimerization sites. Dimer fractions of different mAbs were isolated to a satisfactory purity from bulk material and revealed 2 predominant overall structures, namely elongated and compact dimer forms. The elongated dimers displayed one dimerization site involving the tip of the Fab domain. Depending on the stress applied, these elongated dimers are connected either covalently or non-covalently. In contrast, the compact dimers exhibited non-covalent association. Several interaction points were detected for the compact dimers involving the hinge region or the base of the Fab domain. These results indicate that mAb dimer fractions are rather complex and may contain more than one kind of dimer. Nevertheless, the overall appearance of mAb dimers suggests the existence of 2 predominant dimeric structures, elongated and compact, which are commonly present in preparations of therapeutic mAbs