3,008 research outputs found
Cliffordons
At higher energies the present complex quantum theory with its unitary group
might expand into a real quantum theory with an orthogonal group, broken by an
approximate operator at lower energies. Implementing this possibility
requires a real quantum double-valued statistics. A Clifford statistics,
representing a swap (12) by a difference of Clifford units,
is uniquely appropriate. Unlike the Maxwell-Boltzmann, Fermi-Dirac,
Bose-Einstein, and para- statistics, which are tensorial and single-valued, and
unlike anyons, which are confined to two dimensions, Clifford statistics are
multivalued and work for any dimensionality. Nayak and Wilczek proposed a
Clifford statistics for the fractional quantum Hall effect. We apply them to
toy quanta here. A complex-Clifford example has the energy spectrum of a system
of spin-1/2 particles in an external magnetic field. This supports the proposal
that the double-valued rotations --- spin --- seen at current energies might
arise from double-valued permutations --- swap --- to be seen at higher
energies. Another toy with real Clifford statistics illustrates how an
effective imaginary unit can arise naturally within a real quantum theory.Comment: 15 pages, no figures; original title ("Clifford statistics") changed;
to appear in J. Math. Phys., 42, 2001. Key words: Clifford statistics,
cliffordons, double-valued representations of permutation groups, spin, swap,
imaginary unit , applications to quantum space-time and the Standard
Model. Some of these results were presented at the American Physical Society
Centennial Meeting, Atlanta, March 25, 199
Electron Interactions in Bilayer Graphene: Marginal Fermi Liquid Behaviour and Zero Bias Anomaly
We analyze the many-body properties of bilayer graphene (BLG) at charge
neutrality, governed by long range interactions between electrons. Perturbation
theory in a large number of flavors is used in which the interactions are
described within a random phase approximation, taking account of dynamical
screening effect. Crucially, the dynamically screened interaction retains some
long range character, resulting in renormalization of key quantities.
We carry out the perturbative renormalization group calculations to one loop
order, and find that BLG behaves to leading order as a marginal Fermi liquid.
Interactions produce a log squared renormalization of the quasiparticle residue
and the interaction vertex function, while all other quantities renormalize
only logarithmically. We solve the RG flow equation for the Green function with
logarithmic accuracy, and find that the quasiparticle residue flows to zero
under RG. At the same time, the gauge invariant quantities, such as the
compressibility, remain finite to order, with subleading logarithmic
corrections. The key experimental signature of this marginal Fermi liquid
behavior is a strong suppression of the tunneling density of states, which
manifests itself as a zero bias anomaly in tunneling experiments in a regime
where the compressibility is essentially unchanged from the non-interacting
value.Comment: 12 pages, 3 figure
Are Bosonic Replicas Faulty?
Motivated by the ongoing discussion about a seeming asymmetry in the
performance of fermionic and bosonic replicas, we present an exact,
nonperturbative approach to zero-dimensional replica field theories belonging
to the broadly interpreted "beta=2" Dyson symmetry class. We then utilise the
formalism developed to demonstrate that the bosonic replicas do correctly
reproduce the microscopic spectral density in the QCD inspired chiral Gaussian
unitary ensemble. This disproves the myth that the bosonic replica field
theories are intrinsically faulty.Comment: 4.3 pages; final version to appear in PR
FROM CHRONOLOGICAL NETWORKS TO BAYESIAN MODELS: CHRONOLOG AS A FRONT-END TO OXCAL
We present a new method for creating an OxCal Bayesian model that bypasses the complex task of writing OxCal code. Our methodology employs the recent ChronoLog software as a graphical front-end for generating OxCal scripts. This approach enables archaeologists to create complex Bayesian models—including termini post and ante quem, duration bounds and synchronisms—with the help of a user-friendly interface. The target audience can be divided into beginners, who might struggle to create chronological models using OxCal directly, and experienced OxCal users, who should find that ChronoLog saves time when coding complex models. Three case-studies from recent publications are presented
Critical behavior of density of states near Fermi energy in low-dimensional disordered metals
We study the effect of electron-electron interaction on the one-particle
density of states (\emph{DOS}) of low-dimensional
disordered metals near Fermi energy within the framework of the finite
temperature conventional impurity diagram technique. We consider only diffusive
limit and by a geometric re-summation of the most singular first order
self-energy corrections via the Dyson equation we obtain a non-divergent
solution for the \emph{DOS} at low energies, while for higher energies the
well-known Altshuler-Aronov corrections are recovered. At the Fermi level
, this indicates that interacting disordered
two- and quasi-one-dimensional systems are in insulating state at zero
temperature. The obtained results are in good agreement with recent tunneling
experiments on two-dimensional GaAs/AlGaAs heterostructures and
quasi-one-dimensional doped multiwall carbon nanotubes.Comment: 8 pages, 4 figure
Renormalization of hole-hole interaction at decreasing Drude conductivity
The diffusion contribution of the hole-hole interaction to the conductivity
is analyzed in gated GaAs/InGaAs/GaAs heterostructures. We show
that the change of the interaction correction to the conductivity with the
decreasing Drude conductivity results both from the compensation of the singlet
and triplet channels and from the arising prefactor in the
conventional expression for the interaction correction.Comment: 6 pages, 5 figure
Giant suppression of the Drude conductivity due to quantum interference in disordered two-dimensional systems
Temperature and magnetic field dependences of the conductivity in heavily
doped, strongly disordered two-dimensional quantum well structures
GaAs/InGaAs/GaAs are investigated within wide conductivity and
temperature ranges. Role of the interference in the electron transport is
studied in the regimes when the phase breaking length crosses over the
localization length with lowering temperature,
where and are the Fermi quasimomentum and mean free path,
respectively. It has been shown that all the experimental data can be
understood within framework of simple model of the conductivity over
delocalized states. This model differs from the conventional model of the weak
localization developed for and by one point: the
value of the quantum interference contribution to the conductivity is
restricted not only by the phase breaking length but by the
localization length as well. We show that just the quantity
rather than
, where is the dephasing time and
, is responsible for the temperature and
magnetic field dependences of the conductivity over the wide range of
temperature and disorder strength down to the conductivity of order .Comment: 11 pages, 15 figure
Quantum creep and variable range hopping of one-dimensional interacting electrons
The variable range hopping results for noninteracting electrons of Mott and
Shklovskii are generalized to 1D disordered charge density waves and Luttinger
liquids using an instanton approach. Following a recent paper by Nattermann,
Giamarchi and Le Doussal [Phys. Rev. Lett. {\bf 91}, 56603 (2003)] we calculate
the quantum creep of charges at zero temperature and the linear conductivity at
finite temperatures for these systems. The hopping conductivity for the short
range interacting electrons acquires the same form as for noninteracting
particles if the one-particle density of states is replaced by the
compressibility. In the present paper we extend the calculation to dissipative
systems and give a discussion of the physics after the particles materialize
behind the tunneling barrier. It turns out that dissipation is crucial for
tunneling to happen. Contrary to pure systems the new metastable state does not
propagate through the system but is restricted to a region of the size of the
tunneling region. This corresponds to the hopping of an integer number of
charges over a finite distance. A global current results only if tunneling
events fill the whole sample. We argue that rare events of extra low tunneling
probability are not relevant for realistic systems of finite length. Finally we
show that an additional Coulomb interaction only leads to small logarithmic
corrections.Comment: 15 pages, 3 figures; references adde
- …