4,991 research outputs found
Assessing the Effectiveness of a Computer Simulation in Introductory Undergraduate Environments
We present studies documenting the effectiveness of using a computer simulation, specifically the Circuit Construction Kit (CCK) developed as part of the Physics Education Technology Project (PhET) [1, 2], in two environments: an interactive college lecture and an inquiry-based laboratory. In the first study conducted in lecture, we compared students viewing CCK to viewing a traditional demonstration during Peer Instruction [3]. Students viewing CCK had a 47% larger relative gain (11% absolute gain) on measures of conceptual understanding compared to traditional demonstrations. These results led us to study the impact of the simulation's explicit representation for visualizing current flow in a laboratory environment, where we removed this feature for a subset of students. Students using CCK with or without the explicit visualization of current performed similarly to each other on common exam questions. Although the majority of students in both groups favored the use of CCK over real circuit equipment, the students who used CCK without the explicit current model favored the simulation more than the other grou
The Design and Validation of the Colorado Learning Attitudes about Science Survey
The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure various facets of student attitudes and beliefs about learning physics. This instrument extends previous work by probing additional facets of student attitudes and beliefs. It has been written to be suitably worded for students in a variety of different courses. This paper introduces the CLASS and its design and validation studies, which include analyzing results from over 2400 students, interviews and factor analyses. Methodology used to determine categories and how to analyze the robustness of categories for probing various facets of student learning are also described. This paper serves as the foundation for the results and conclusions from the analysis of our survey dat
Towards characterizing the relationship between students' interest in and their beliefs about physics
We examine the relationships between students' self-reported interest and their responses to a physics beliefs survey. Results from the Colorado Learning Attitudes about Science Survey (CLASS v3), collected in a large calculusbased introductory mechanics course (N=391), were used to characterize students' beliefs about physics and learning physics at the beginning and end of the semester. Additionally students were asked at the end of the semester to rate their interest in physics, how it has changed, and why. We find a correlation between surveyed beliefs and self-rated interest (R=0.65). At the end of the term, students with more expert-like beliefs as measured by the 'Overall' CLASS score also rate themselves as more interested in physics. An analysis of students' reasons for why their interest changed showed that a sizable fraction of students cited reasons tied to beliefs about physics or learning physics as probed by the CLASS survey. The leading reason for increased interest was the connection between physics and the real world
Correlating Student Beliefs With Student Learning Using The Colorado Learning Attitudes about Science Survey
A number of instruments have been designed to probe the variety of attitudes, beliefs, expectations, and epistemological frames taught in our introductory physics courses. Using a newly developed instrument -- the Colorado Learning Attitudes about Science Survey (CLASS)[1] -- we examine the relationship between students' beliefs about physics and other educational outcomes, such as conceptual learning and student retention. We report results from surveys of over 750 students in a variety of courses, including several courses modified to promote favorable beliefs about physics. We find positive correlations between particular student beliefs and conceptual learning gains, and between student retention and favorable beliefs in select categories. We also note the influence of teaching practices on student beliefs
A New Instrument For Measuring Student Beliefs About Physics and Learning Physics: The Colorado Learning Attitudes About Science Survey
The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure student beliefs about physics and about learning physics. This instrument extends previous work by probing additional aspects of student beliefs and by using wording suitable for students in a wide variety of physics courses. The CLASS has been validated using interviews, reliability studies, and extensive statistical analyses of responses from over 5000 students. In addition, a new methodology for determining useful and statistically robust categories of student beliefs has been developed. This paper serves as the foundation for an extensive study of how student beliefs impact and are impacted by their educational experiences. For example, this survey measures: that most teaching practices cause substantial drops in student scores; that a student's likelihood of becoming a physics major correlates with their 'Personal Interest' score; and that, for a majority of student populations, women's scores in some categories, including 'Personal Interest' and 'Real World Connections', are significantly different than men's scores
Imaging density disturbances in water with 41.3 attosecond time resolution
We show that the momentum flexibility of inelastic x-ray scattering may be
exploited to invert its loss function, alowing real time imaging of density
disturbances in a medium. We show the disturbance arising from a point source
in liquid water, with a resolution of 41.3 attoseconds (
sec) and 1.27 ( cm). This result is used to
determine the structure of the electron cloud around a photoexcited molecule in
solution, as well as the wake generated in water by a 9 MeV gold ion. We draw
an analogy with pump-probe techniques and suggest that energy-loss scattering
may be applied more generally to the study of attosecond phenomena.Comment: 4 pages, 4 color figure
One-dimensional collision carts computer model and its design ideas for productive experiential learning
We develop an Easy Java Simulation (EJS) model for students to experience the
physics of idealized one-dimensional collision carts. The physics model is
described and simulated by both continuous dynamics and discrete transition
during collision. In the field of designing computer simulations, we discuss
briefly three pedagogical considerations such as 1) consistent simulation world
view with pen paper representation, 2) data table, scientific graphs and
symbolic mathematical representations for ease of data collection and multiple
representational visualizations and 3) game for simple concept testing that can
further support learning. We also suggest using physical world setup to be
augmented complimentary with simulation while highlighting three advantages of
real collision carts equipment like tacit 3D experience, random errors in
measurement and conceptual significance of conservation of momentum applied to
just before and after collision. General feedback from the students has been
relatively positive, and we hope teachers will find the simulation useful in
their own classes. 2015 Resources added:
http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/46-one-dimension-collision-js-model
http://iwant2study.org/ospsg/index.php/interactive-resources/physics/02-newtonian-mechanics/02-dynamics/195-elastic-collisionComment: 6 pages, 8 figures, 1 table, 1 L. K. Wee, Physics Education 47 (3),
301 (2012); ISSN 0031-912
Renormalization of hole-hole interaction at decreasing Drude conductivity
The diffusion contribution of the hole-hole interaction to the conductivity
is analyzed in gated GaAs/InGaAs/GaAs heterostructures. We show
that the change of the interaction correction to the conductivity with the
decreasing Drude conductivity results both from the compensation of the singlet
and triplet channels and from the arising prefactor in the
conventional expression for the interaction correction.Comment: 6 pages, 5 figure
- …