6,173 research outputs found

    An epistemology and expectations survey about experimental physics: Development and initial results

    Full text link
    In response to national calls to better align physics laboratory courses with the way physicists engage in research, we have developed an epistemology and expectations survey to assess how students perceive the nature of physics experiments in the contexts of laboratory courses and the professional research laboratory. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) evaluates students' epistemology at the beginning and end of a semester. Students respond to paired questions about how they personally perceive doing experiments in laboratory courses and how they perceive an experimental physicist might respond regarding their research. Also, at the end of the semester, the E-CLASS assesses a third dimension of laboratory instruction, students' reflections on their course's expectations for earning a good grade. By basing survey statements on widely embraced learning goals and common critiques of teaching labs, the E-CLASS serves as an assessment tool for lab courses across the undergraduate curriculum and as a tool for physics education research. We present the development, evidence of validation, and initial formative assessment results from a sample that includes 45 classes at 20 institutions. We also discuss feedback from instructors and reflect on the challenges of large-scale online administration and distribution of results.Comment: 31 pages, 9 figures, 3 tables, submitted to Phys. Rev. - PE

    Evolution of Lyman Alpha Galaxies: Stellar Populations at z ~ 0.3

    Full text link
    We present the results of a stellar population analysis of 30 Lyman alpha emitting galaxies (LAEs) at z ~ 0.3, previously discovered with the Galaxy Evolution Explorer (GALEX). With a few exceptions, we can accurately fit model spectral energy distributions to these objects, representing the first time this has been done for a large sample of LAEs at z < 3, a gap of ~ 8 Gyr in the history of the Universe. From the 26/30 LAEs which we can fit, we find an age and stellar mass range of 200 Myr - 10 Gyr and 10^9 - 10^11 Msol, respectively. These objects thus appear to be significantly older and more massive than LAEs at high-redshift. We also find that these LAEs show a mild trend towards higher metallicity than those at high redshift, as well as a tighter range of dust attenuation and interstellar medium geometry. These results suggest that low-redshift LAEs have evolved significantly from those at high redshift.Comment: Accepted for publication in the Astrophysical Journal. Replaced with accepted version. Eight pages, four figures, in emulateapj forma

    Critical behavior of density of states near Fermi energy in low-dimensional disordered metals

    Get PDF
    We study the effect of electron-electron interaction on the one-particle density of states (\emph{DOS}) ρ(d)(ϵ,T)\rho^{(d)}(\epsilon,T) of low-dimensional disordered metals near Fermi energy within the framework of the finite temperature conventional impurity diagram technique. We consider only diffusive limit and by a geometric re-summation of the most singular first order self-energy corrections via the Dyson equation we obtain a non-divergent solution for the \emph{DOS} at low energies, while for higher energies the well-known Altshuler-Aronov corrections are recovered. At the Fermi level ρ(d)(ϵ,T=0)0\rho^{(d)}(\epsilon,T=0)\to 0, this indicates that interacting disordered two- and quasi-one-dimensional systems are in insulating state at zero temperature. The obtained results are in good agreement with recent tunneling experiments on two-dimensional GaAs/AlGaAs heterostructures and quasi-one-dimensional doped multiwall carbon nanotubes.Comment: 8 pages, 4 figure
    corecore