467 research outputs found

    High-Precision Localization Using Ground Texture

    Full text link
    Location-aware applications play an increasingly critical role in everyday life. However, satellite-based localization (e.g., GPS) has limited accuracy and can be unusable in dense urban areas and indoors. We introduce an image-based global localization system that is accurate to a few millimeters and performs reliable localization both indoors and outside. The key idea is to capture and index distinctive local keypoints in ground textures. This is based on the observation that ground textures including wood, carpet, tile, concrete, and asphalt may look random and homogeneous, but all contain cracks, scratches, or unique arrangements of fibers. These imperfections are persistent, and can serve as local features. Our system incorporates a downward-facing camera to capture the fine texture of the ground, together with an image processing pipeline that locates the captured texture patch in a compact database constructed offline. We demonstrate the capability of our system to robustly, accurately, and quickly locate test images on various types of outdoor and indoor ground surfaces

    HiFi-GAN: High-Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

    Full text link
    Real-world audio recordings are often degraded by factors such as noise, reverberation, and equalization distortion. This paper introduces HiFi-GAN, a deep learning method to transform recorded speech to sound as though it had been recorded in a studio. We use an end-to-end feed-forward WaveNet architecture, trained with multi-scale adversarial discriminators in both the time domain and the time-frequency domain. It relies on the deep feature matching losses of the discriminators to improve the perceptual quality of enhanced speech. The proposed model generalizes well to new speakers, new speech content, and new environments. It significantly outperforms state-of-the-art baseline methods in both objective and subjective experiments.Comment: Accepted by INTERSPEECH 202

    Principles for Designing Teaching and Learning Spaces

    Get PDF
    "The Principles for Designing Teaching and Learning Spaces consider the classroom environment within the context of what is known about students’ learning. These Principles are then translated into specific design features to guide design decisions, such that learning spaces become a physical manifestation of the university’s teaching and learning vision.

    Fine tone control in hardware hatching

    Get PDF

    Research-Informed Principles for (Re)designing Teaching and Learning Spaces

    Get PDF
    Designing physical learning environments that connect to indicators of effective educational practice reflects a university’s pedagogical commitment to student success. This article describes an approach to teaching and learning space design based on research-informed pedagogical principles implemented successfully at our university. It then articulates how those principles can be translated into classroom design features, with examples. These principles have had an operational and conceptual impact on campus, providing a framework for diverse audiences to think about spaces in a way that reflects shared goals, language and values

    Productivity Dispersion in Medicine and Manufacturing

    Get PDF
    The conventional wisdom in health economics is that large differences in average productivity across US hospitals are the result of idiosyncratic features of the healthcare sector which dull the role of market forces. Strikingly, however, we find that productivity dispersion in heart attack treatment across hospitals is, if anything, smaller than in narrowly defined manufacturing industries such as ready-mixed concrete. While this fact admits multiple interpretations, it suggests that healthcare may have more in common with "traditional" sectors than is often assumed, and relatedly, that insights from research on productivity and allocation in other sectors may enrich analysis of healthcare

    Digital bas-relief from 3D scenes

    Get PDF

    Transcatheter aortic valve implantation

    Get PDF

    Erasure-cooling, control, and hyper-entanglement of motion in optical tweezers

    Full text link
    We demonstrate how motional degrees of freedom in optical tweezers can be used as quantum information carriers. To this end, we first implement a species-agnostic cooling mechanism via conversion of motional excitations into erasures - errors with a known location - reminiscent of Maxwell's demon thought experiment. We find that this cooling mechanism fundamentally outperforms idealized traditional sideband cooling, which we experimentally demonstrate in specific scenarios. By coherently manipulating the motional state, we perform mid-circuit readout and mid-circuit erasure detection of an optical qubit via local shelving into motional superposition states. We finally entangle the motion of two atoms in separate tweezers, and utilize this to generate hyper-entanglement by preparing a simultaneous Bell state of motional and optical qubits. This work shows how controlling motion enriches the toolbox of quantum information processing with neutral atoms, and opens unique prospects for metrology enhanced by mid-circuit readout and a large class of quantum operations enabled via hyper-entanglement.Comment: PS, ALS and RF contributed equally to this wor
    • …
    corecore