2,232 research outputs found
X-ray Spectral Signatures of the Photon Bubble Model for Ultraluminous X-ray Sources
The nature of ultraluminous X-ray sources in nearby galaxies is one of the
major open questions in modern X-ray astrophysics. One possible explanation for
these objects is an inhomogeneous, radiation dominated accretion disk around a
black hole -- the so-called ``photon bubble'' model. While
previous studies of this model have focused primarily on its
radiation-hydrodynamics aspects, in this paper, we provide an analysis of its
X-ray spectral (continuum and possible edge and line) characteristics. Compton
reflection between high and low density regions in the disk may provide the key
to distinguishing this model from others, such as accretion onto an
intermediate mass black hole. We couple a Monte Carlo/Fokker-Planck radiation
transport code with the XSTAR code for reflection to simulate the photon
spectra produced in a photon bubble model for ULXs. We find that reflection
components tend to be very weak and in most cases not observable, and make
predictions for the shape of the high-energy Comptonizing spectra. In many
cases the Comptonization dominates the spectra even down to a few keV.
In one simulation, a \sim 9 \kev feature was found, which may be considered a
signature of photon bubbles in ULXs; furthermore, we make predictions of high
energy power-laws which may be observed by future instruments.Comment: Accepted for publication in the Astrophysical Journa
- …