10,091 research outputs found
Stationary phase slip state in quasi-one-dimensional rings
The nonuniform superconducting state in a ring in which the order parameter
vanishing at one point is studied. This state is characterized by a jump of the
phase by at the point where the order parameter becomes zero. In uniform
rings such a state is a saddle-point state and consequently unstable. However,
for non-uniform rings with e.g. variations of geometrical or physical
parameters or with attached wires this state can be stabilized and may be
realized experimentally.Comment: 6 pages, 7 figures, RevTex 4.0 styl
Data compression and regression based on local principal curves.
Frequently the predictor space of a multivariate regression problem of the type y = m(x_1, …, x_p ) + ε is intrinsically one-dimensional, or at least of far lower dimension than p. Usual modeling attempts such as the additive model y = m_1(x_1) + … + m_p (x_p ) + ε, which try to reduce the complexity of the regression problem by making additional structural assumptions, are then inefficient as they ignore the inherent structure of the predictor space and involve complicated model and variable selection stages. In a fundamentally different approach, one may consider first approximating the predictor space by a (usually nonlinear) curve passing through it, and then regressing the response only against the one-dimensional projections onto this curve. This entails the reduction from a p- to a one-dimensional regression problem.
As a tool for the compression of the predictor space we apply local principal curves. Taking things on from the results presented in Einbeck et al. (Classification – The Ubiquitous Challenge. Springer, Heidelberg, 2005, pp. 256–263), we show how local principal curves can be parametrized and how the projections are obtained. The regression step can then be carried out using any nonparametric smoother. We illustrate the technique using data from the physical sciences
Density-functional study of Cu atoms, monolayers, and coadsorbates on polar ZnO surfaces
The structure and electronic properties of single Cu atoms, copper monolayers
and thin copper films on the polar oxygen and zinc terminated surfaces of ZnO
are studied using periodic density-functional calculations. We find that the
binding energy of Cu atoms sensitively depends on how charge neutrality of the
polar surfaces is achieved. Bonding is very strong if the surfaces are
stabilized by an electronic mechanism which leads to partially filled surface
bands. As soon as the surface bands are filled (either by partial Cu coverage,
by coadsorbates, or by the formation of defects), the binding energy decreases
significantly. In this case, values very similar to those found for nonpolar
surfaces and for copper on finite ZnO clusters are obtained. Possible
implications of these observations concerning the growth mode of copper on
polar ZnO surfaces and their importance in catalysis are discussed.Comment: 6 pages with 2 postscript figures embedded. Uses REVTEX and epsf
macro
Mechanical On-Chip Microwave Circulator
Nonreciprocal circuit elements form an integral part of modern measurement
and communication systems. Mathematically they require breaking of
time-reversal symmetry, typically achieved using magnetic materials and more
recently using the quantum Hall effect, parametric permittivity modulation or
Josephson nonlinearities. Here, we demonstrate an on-chip magnetic-free
circulator based on reservoir engineered optomechanical interactions.
Directional circulation is achieved with controlled phase-sensitive
interference of six distinct electro-mechanical signal conversion paths. The
presented circulator is compact, its silicon-on-insulator platform is
compatible with both superconducting qubits and silicon photonics, and its
noise performance is close to the quantum limit. With a high dynamic range, a
tunable bandwidth of up to 30 MHz and an in-situ reconfigurability as beam
splitter or wavelength converter, it could pave the way for superconducting
qubit processors with integrated and multiplexed on-chip signal processing and
readout.Comment: References have been update
- …